
DEFERRED CORRECTION METHODS
FOR ORDINARY DIFFERENTIAL EQUATIONS∗

BENJAMIN W. ONG† AND RAYMOND J. SPITERI‡

Abstract. Deferred correction is a well-established method for incrementally increasing the
order of accuracy of a numerical solution to a set of ordinary differential equations. Because im-
plementations of deferred corrections can be pipelined, multi-core computing has increased the im-
portance of deferred correction methods in practice, especially in the context of solving initial-value
problems. In this paper, we review the theoretical underpinnings of deferred correction methods,
specifically classical deferred correction, spectral deferred correction, and integral deferred correc-
tion. We highlight some non-traditional nuances of their implementations, including the choice of
quadrature points, interpolants, and combinations of discretization methods, in a unified notation.
We analyze how time-integration methods based on deferred correction can be effective solvers on
modern computer architectures and demonstrate their performance on a diverse set of examples.
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1. Introduction. Deferred correction (DC) methods are well-established meth-
ods for the construction of high-order approximations to the solution of differential
equations based on lower-order numerical methods by a process of iterated correc-
tions. The general idea is that a numerical solution to an initial-value problem (IVP)
for a system of ordinary differential equations (ODEs) is computed and then subse-
quently refined by solving related IVPs. Under suitable assumptions, this process can
be repeated to produce solutions with an arbitrarily high order of accuracy.

DC methods were originally proposed by Fox in [14] as difference correction meth-
ods. Fox notes that derivatives may be expressed as infinite series of differences, and
thus the common finite-difference approximations to derivatives are truncated ver-
sions of these series. These difference correction methods compute a solution, then
calculate a correction term of higher-order differences, which is then used to calculate
a new solution. This correction turns out to be an estimate of the local discretiza-
tion error [39]. These methods allow the improvement of accuracy of finite-difference
solutions without increasing the complexity of the algebraic systems required for the
solution. However, they require calculation of solution values outside the interval of
integration, and high-order differences typically suffer from significant cancellation,
leading to non-negligible round-off errors. In [14], deferred correction is applied to
boundary-value problems (BVPs) for ODEs and eigenvalue problems for ODEs and
partial differential equations (PDEs). The approach is applied to IVPs by Fox and
Goodwin in [15]. Pereyra generalizes deferred correction to functional equations in [34]
and considers specific examples in the solution of BVPs in [35].

Zadunaisky discusses in [46, 47] a method for estimating the error in a numerical
solution to an IVP or BVP, an idea that now forms the basis for defect correction.
Given a numerical solution ỹ(t) to an IVP, a neighbouring problem is constructed for
which ỹ(t) is the exact solution. A numerical solution for the neighbouring problem
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is then computed, and because the exact solution ỹ(t) to this problem is known
by construction, its error can be calculated exactly. This error is then used as an
estimate of the error in ỹ(t) and hence ỹ(t) can be corrected. The method requires
the interpolation of the numerical solution and is prone to problems when using large
equi-spaced grids. Such problems are mitigated by dividing the interval of integration
into several pieces with small numbers of points in each [47]. In [42], Stetter generalizes
this technique as the basis for an iterative defect correction method, in which the
error approximation is added to the numerical solution to form a new solution, and
the process of finding a neighbouring problem is repeated.

Skeel in [39] reviews the history of DC methods and related methods up to the
time of its publication. DC methods have been extensively applied to IVPs [15,
13, 8, 9, 10, 20] and BVPs [14, 34, 35] for ODEs, initial-boundary value problems
for PDEs [14, 23, 37], differential-algebraic equations [37, 22], and eigenvalue prob-
lems [15, 12]. They have been used in conjunction with linear multistep methods [43],
Krylov subspace methods [21, 5, 22], and splitting methods [17]. The most popular
construction for interpolation is via Lagrange polynomials. The use of rational func-
tions for interpolation on equi-spaced grids for DC methods was studied in [16]. Here,
we also discuss the use of interpolants based on continuous extensions of numerical
methods as well as splines.

In [13], Dutt et al. propose a variant of deferred correction called spectral deferred
correction (SDC) that bases the correction step on the Picard integral form of the so-
lution to the IVP. The motivation for using the Picard form is the increased stability;
however, the choice of Gauss–Legendre (spectral) nodes as abscissae for the associated
interpolation also contributes to this. Dutt et al. investigate convergence orders as
high as 20 on test problems but limit the integrators to forward and backward Euler.

DC and SDC methods have some appealing properties. In [29], Liu et al. explore
the strong-stability-preserving property in the context of SDC. Recent research has
shown that under certain conditions DC methods [1, 2] and SDC methods [17] can
be viewed as approximations to implicit Runge–Kutta (IRK) methods. Collocation
methods are known to be equivalent to IRK methods (see [18, Chap. II Thm 7.7]),
and by construction they have zero residual. In [17], Hagstrom and Zhou show that
by constructing residuals of sufficiently high order, an SDC method achieves the
same order as an IRK method at the grid points. Similarly, Auzinger et al. in [1, 2]
show that DC methods are iterative collocation solvers and, with certain choices of
nodes, can exhibit superconvergence. A study of the convergence of DC solutions
to collocation solutions and subsequent insights into choosing quadrature methods is
presented in [36].

SDC was implemented in a semi-implicit manner for the solution of incompress-
ible flows in [31], the Allen–Cahn and Cahn–Hilliard equations in [28], and the com-
pressible Boussinesq equation in [38], where the splitting was based on wave speeds.
SDC was applied in a multi-level framework for solving PDEs in [41], where spatial
coarsening was used for generating predictors (initial approximations; provisional or
uncorrected solutions). A study of the accuracy and stability of SDC methods for vari-
ous choices of quadrature nodes (Gauss–Legendre, Gauss–Lobatto, Gauss–Radau, and
uniformly spaced) was performed in [25]. The use of higher-order provisional solutions
before the application of SDC iterations is explored in [26], where the backward Euler
method is used to improve the order of accuracy by one at each SDC iteration. Order
reduction associated with semi-implicit SDC was observed in [30]. SDC was used
in a multi-implicit manner in [4] and [24]. In [4], advection-diffusion-reaction PDEs
are solved using the method of lines. The advection term is integrated explicitly;
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the diffusion and reaction terms are integrated implicitly, independently, and with
potentially different time steps. In [24], a finite volume approach is used to discretize
the compressible Navier–Stokes equations in order to produce a conservative method.
SDC was applied to fractional differential equations in [45]. Of particular note to
parallel-in-time integrators, in [32] SDC was incorporated as the “fine propagator” in
the parareal framework [27].

More recently, Christlieb et al. describe another variant called integral deferred
correction (IDC) that allows for higher-order single-step integrators to be used [8, 9, 7].
Operator splitting techniques (such as Lie–Trotter and Strang operator splitting),
alternating direction implicit (ADI) methods, and implicit-explicit (IMEX) methods
were introduced in the IDC context in [7] and applied to the Vlasov–Poisson problem
in [6]. IDC methods were applied to singular perturbation problems in [3].

Of particular recent interest, in [10], Christlieb et al. demonstrate that it is possi-
ble to implement a parallel version of IDC, which they call revisionist integral deferred
correction (RIDC), such that under mild assumptions it is possible to produce an arbi-
trarily high-order solution in essentially the same wall-clock time it takes to compute
the provisional solution. In other words, it can exploit coarse-grained parallelism on
a small to moderate number of compute cores with near perfect efficiency. More gen-
erally, this makes DC methods particularly attractive for use on modern computer
architectures: a high-accuracy solution to an IVP can be obtained in approximately
the same wall-clock time as a low-accuracy solution provided a small number of cores
are available. Investigations into the use of adaptive step-size control within the RIDC
framework were carried out in [11].

In this paper, we undertake a review of the different classes of DC methods used
in the solution of IVPs. We assume that the IVP is in the standard form

d

dt
y(t) = f(t,y(t)), a < t < b,(1a)

y(a) = ya,(1b)

where ya ∈ Cm, y(t) : R → Cm and f : R × Cm → Cm. We assume that f is
sufficiently smooth for existence and uniqueness of the solution and its corresponding
series expansions when using high-order methods.

The remainder of this paper is structured as follows. In §2, we review some of the
theoretical background necessary for the understanding of deferred correction methods
and establish a unified notation. In §3, we review the different deferred correction
methods in use, including (classical) deferred correction, spectral deferred correction,
integral deferred correction, and revisionist integral deferred correction. We offer some
ideas for implementation that illustrate the flexibility of deferred correction methods,
with particular emphasis on the RIDC formulation for parallel architectures. In §4,
we discuss our numerical testing of these ideas and the results on some benchmark
problems. In §5, we give our conclusions.

2. Theoretical background. In this section, we provide the essential theoret-
ical background behind deferred correction for the solution of IVPs.

2.1. Accuracy, stability, and stiffness. When solving an IVP (1) numerically,
we are concerned with issues such as the order of accuracy and the stability of a
numerical method and its effectiveness as a stiff solver.

If the numerical solution to (1) at the endpoint t = b is ỹ(b), then the method
used for its computation is said to be of order of accuracy (or simply order) p if for
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sufficiently smooth f there exists a (real) constant C > 0 such that

‖y(b)− ỹ(b)‖ < C · (∆t)p,

where ∆t is the step size, assumed to be sufficiently small. The (linear) stability of a
numerical method is analyzed by applying it to the scalar test equation

d

dt
y(t) = λ y(t), 0 < t < b,

y(0) = 1,

where λ ∈ C, and we are most interested in the case Re(λ) ≤ 0. This problem has the
exact solution y(t) = eλt. The solution of the test equation with a numerical method
can usually be written in terms of the method’s stability function R(z). After n steps
of constant size ∆t, the numerical solution is

yn = Rn(z),

where z = λ∆t. Clearly if |R(z)| ≤ 1, the numerical solution remains bounded as n
increases, and the method is called stable for such values of z. If a method is stable
for all z with Re(z) ≤ 0, i.e., for all z in the left half-plane, then the method is called
A-stable. If a method is stable for all z with π−α ≤ arg(z) ≤ π+α, then the method
is A(α)-stable. It can be seen that A-stability is equivalent to A(α)-stability with
α = π

2 . A method is called L-stable if it is A-stable and in addition

lim
Re(z)→−∞

R(z) = 0.

Notwithstanding some potential recent progress [40], there is arguably no univer-
sally accepted definition of stiffness in the numerical solution of differential equations.
For the purposes of this discussion, it suffices to say that an IVP (1) is stiff when
the restrictions imposed on the step size of a numerical method due to stability re-
quirements are stricter than those due to accuracy requirements. Numerical methods
that are A- or L-stable are generally considered to be effective in avoiding step-size
restrictions due to stiffness.

2.2. Spectral integration and differentiation. Suppose that {t1, t2, . . . , tn}
is a strictly increasing sequence of points in R and that for each point ti there is a
corresponding solution value yi. Let Y = (y1,y2, . . . ,yn). Then we can define the
Lagrange form of the interpolant of order n for the points Y at any point t ∈ R by
the familiar formula

Ln(t; Y) =

n∑
i=1

`i(t) · yi,

where Ln : R× Cm×n → Cm and the basis functions `i(t) are given by the formula

`i(t) =

n∏
j=1
j 6=i

t− tj
ti − tj

.

It is well known that the operations of differentiation and integration of polyno-
mials can be conveniently viewed as matrix multiplication; we now define the differ-
entiation and integration matrices to be used in this discussion.
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Definition 1 (Differentiation matrix). Let y(t) : R → Cm, and let the matrix
Y = (y1,y2, . . . ,yn) be defined by

yi = y(ti), i = 1, 2, . . . , n.

Then if d = (d1,d2, . . . ,dn) is defined by

di =
d

dt

∣∣∣
t=ti

Ln(t; Y), i = 1, 2, . . . , n,

the linear mapping Dn : Cm×n → Cm×n for which

d = Dn(Y)

is referred to as the differentiation matrix.

Definition 2 (Integration matrix). Similarly, if q = (q1,q2, . . . ,qn) is defined
by

qi =

∫ ti

−1
Ln(t; Y) dt, i = 1, 2, . . . , n,

then the linear mapping Qn : Cm×n → Cm×n for which

q = Qn(Y)

is referred to as the integration matrix.

We have defined the lower bound of the integral in Definition 2 to be −1 in
anticipation of using Gaussian quadrature nodes (Gauss–Legendre or Gauss–Lobatto)
for its evaluation in spectral deferred correction. Given a positive integer n, we denote
the n Gaussian nodes on [−1, 1] by τ1, τ2, . . . , τn. For the scaled and shifted problem
on [a, b] ⊂ R, we denote the n Gaussian nodes by τ̄1, τ̄2, . . . , τ̄n, given by

(2) τ̄i =
b− a

2
· τi +

b+ a

2
, i = 1, 2, . . . , n.

If Dn and Qn are computed using Gaussian nodes, they have been referred to as the
spectral differentiation and integration matrices, respectively. However, this termi-
nology generally applies to any choice of spectral nodes, including Chebyshev nodes.
The n Chebyshev nodes on [−1, 1] are

θi = − cos
(2i− 1

2n
π
)
, i = 1, 2, . . . , n,

where the negative sign is included so that the nodes are in increasing order. The
Chebyshev nodes for the scaled and shifted problem on [a, b] ⊂ R are formed as in (2).

If the function y(t) is a polynomial of degree at most n− 1 and the matrix Y is
defined as above, then y(t) ≡ Ln(t; Y), and the operators Dn and Qn are exact.

3. Classes of Deferred Correction Methods. We now describe the main
classes of deferred correction methods that have been proposed. On the continuous
level, all the methods are equivalent. We distinguish between deferred correction
methods based on the form of the error equation that is discretized and solved nu-
merically. In practice, the stability of the implementation depends critically on how
this is done.
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We suppose that the time domain, [a, b], is subdivided into J intervals,

a = t0 < t1 < · · · < tj < · · · < tJ = b.(3)

Each interval, [tj , tj+1] is further subdivided using n nodes,

tj ≤ tj,1 < tj,2 < · · · < tj,n ≤ tj+1 j = 0, 1, . . . , J − 1.(4)

We note that each group of nodes, {tj,k}nk=1, may include both endpoints {tj , tj+1}
of each interval, as in the case of Gauss–Lobatto or uniformly spaced nodes, or they
may not, as in the case of Gauss–Legendre, Gauss–Radau, or Chebyshev nodes.

The general idea for deferred correction methods is as follows. In interval [tj , tj+1],
one uses a method of order p0 to determine a provisional solution for equation (1),

Y
[0]
j = (y

[0]
j,1, . . . ,y

[0]
j,n), where

y
[0]
j,i = y(tj,i) +O((∆t)p0), i = 1, 2, . . . , n.

We then iterate with a deferred correction method. Denoting the continuous approx-

imation to y(t) based on the points Y
[k]
j on interval [tj , tj+1] and at iteration k by

Y
[k]
j (t) = (y

[k]
j,1(t), . . . ,y

[k]
j,n(t)), the error function at iteration k is defined by

(5) e
[k]
j (t,Y

[k]
j (t)) = y(t)−Y

[k]
j (t), t ∈ [tj , tj+1],

and can be constructed and returned as part of the output from each algorithm
described below, if desired.

3.1. Classical Deferred Correction. Classical deferred correction (CDC) uses
a sequence of IVPs for the error based on equation (5) to continually improve a given

approximate solution, Y
[0]
j (t), in each interval. Differentiating the error function (5),

we form the error IVP

d

dt
e
[k]
j (t,Y

[k]
j (t)) =

d

dt
y(t)− d

dt
Y

[k]
j (t)

= f
(
t, e

[k]
j (t,Y

[k]
j (t)) + Y

[k]
j (t)

)
− d

dt
Y

[k]
j (t),(6a)

e
[k]
j (tj ,Y

[k](tj)) = 0.(6b)

We solve the error equation at iteration k with a method of order pk to get an

approximate solution E
[k]
j = (e

[k]
j,1, e

[k]
j,2, . . . , e

[k]
j,n), where

e
[k]
j,i = e

[k]
j (tj,i,y

[k]
j,i) +O((∆t)pk), i = 1, 2, . . . , n.

We now form the corrected solution

Y
[k+1]
j = Y

[k]
j + E

[k]
j ,

extrapolating to tj+1 if necessary.
The procedure for CDC is given in Algorithm 1. Provided the order of the inter-

polant is sufficiently high and uniformly spaced nodes are used, after this procedure

the solution is accurate to order O((∆t)PK ), where PK =
K∑
k=0

pk. More precisely
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however, if the order of accuracy of Y[k](t) is n (e.g., using Lagrange polynomial
interpolation with n points), then the solution has order of accuracy

(7) O((∆t)min(P,n−1))

because it uses the differentiated interpolant. In practice, the quality of the estimate
is also influenced by the stability of interpolant. For example, the “catastrophically
bad” idea [44, p. 42] of high-order interpolation at equally spaced points generally
gives poor results despite the formally high order of accuracy. However, by keeping
the order of the interpolant Y[k](t) low, e.g., by using splines or using Lagrange
interpolation but on suitably small intervals [tj , tj+1], CDC can produce acceptable
results. This is illustrated in §4.

Algorithm 1 Classical deferred correction

1. for j = 1 to J do

2. Compute an initial approximation Y
[0]
j = (y

[0]
j,1,y

[0]
j,2, . . . ,y

[0]
j,n) to IVP (1) at

the points tj,i ∈ [tj,1, tj,n], i = 1, 2, . . . , n, using a method of order p0.
3. for k = 1 to K do
4. Form the continuous solution Y

[k−1]
j (t).

5. Solve the IVP (6) using a method of order pk to compute an approxima-

tion to the error E
[k−1]
j = (e

[k−1]
j,1 , . . . , e

[k−1]
j,n ).

6. Form the new approximate solution Y
[k]
j = Y

[k−1]
j + E

[k−1]
j .

7. end for
8. end for
9. return Y

[K]
j (tj+1), using extrapolation if necessary.

3.2. Spectral Deferred Correction. Like CDC, SDC uses a sequence of IVPs
to continually improve an initial approximate solution Y[0](t). The equation used for
the error is based on the Picard form of the IVP (1),

(8) y(t) = ya +

∫ t

a

f(t′,y(t′)) dt′.

Given a continuous approximation Y[k](t) to the solution of (8), we define the residual
function

r[k](t,Y[k](t)) = ya +

∫ t

a

f(t′,Y[k](t′)) dt′ −Y[k](t)

and write

(9) e[k](t,Y[k](t)) =

∫ t

a

[
f
(
t′,Y[k](t′) + e[k](t′,Y[k](t′))

)
− f(t′,Y[k](t′))

]
dt′ + r[k](t,Y[k](t)).

We define the function ∆f : R× Cm → Cm by

(10) ∆f [k](t,Y[k](t)) = f
(
t,Y[k](t) + e[k](t,Y[k](t))

)
− f(t,Y[k](t)),

then rewrite (9) in a Picard integral form like (8),

(11) e[k](t,Y[k](t)) =

∫ t

a

∆f [k](t′,Y[k](t′)) dt′ + r[k](t,Y[k](t)).
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We then differentiate (11) to form the IVP used for the SDC algorithm

d

dt
e[k](t,Y[k](t)) = ∆f [k](t,Y[k](t)) +

d

dt
r[k](t,Y[k](t)),

e[k](a,Y[k](a)) = 0.

The SDC algorithm is applied independently to each group of nodes (4) within
[tj , tj+1] using

d

dt
e
[k]
j (t,Y

[k]
j (t)) = ∆f [k](t,Y

[k]
j (t)) +

d

dt
r[k](t,Y

[k]
j (t)),(12a)

e
[k]
j (tj ,Y

[k]
j (tj)) = 0.(12b)

The residual function within each group of nodes satisfies

(13) r
[k]
j (t,Y

[k]
j (t)) = Y

[k]
j−1(tj) +

∫ t

tj

f(t′,Y
[k]
j (t′)) dt′ −Y

[k]
j (t).

We define the the m×n residual matrix Rj(Y
[k]) by using quadrature to approximate

the integral in (13),

R
[k]
j (Y

[k]
j ) =

(
r
[k]
j (tj.1,y

[k]
j,1), r[k](tj,2,y

[k]
j,2), . . . , r[k](tj,n,y

[k]
j,n)
)
,(14)

≈ A
[k]
j + Qn(F

[k]
j )−Y

[k]
j ,

where the matrix A
[k]
j is given by

A
[k]
j =

{
(ya,ya, . . . ,ya), j = 1,

(Y
[k]
j−1(tj),Y

[k]
j−1(tj), . . . ,Y

[k]
j−1(tj)), j > 1,

and the matrix F[k] is given by

F
[k]
j =

(
f(tj,1,y

[k]
j,1), f(tj,2,y

[k]
j,2), . . . , f(tj,n,y

[k]
j,n)
)
.

The procedure for SDC is given in Algorithm 2. SDC as originally formulated
uses spectral nodes τ̄i, i = 1, 2, . . . , n, e.g., the Gaussian nodes (2), as the points

at which Y
[k]
j is computed. Using spectral nodes, SDC generally gives superior re-

sults compared to CDC, especially for large n, because it does not differentiate the
interpolating polynomial.

3.3. Integral Deferred Correction. The main idea behind integral deferred
correction (IDC) is to solve an integral form of the error equation that also incorpo-
rates the defect of the solution. Given an approximate continuous solution Y[k](t) to
(1), we define the defect function by

(15) δ[k](t,Y[k](t)) =
d

dt
Y[k](t)− f(t,Y[k](t)).

Using (15), the derivative of the error function given by (5) can be expressed as

d

dt
e[k](t,Y[k](t)) =

d

dt
y(t)− d

dt
Y[k](t)

= f(t,y(t))− f(t,Y[k](t))− δ[k](t,Y[k](t))

= f
(
t,Y[k](t) + e[k](t,Y[k](t))

)
− f(t,Y[k](t))− δ[k](t,Y[k](t)),
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Algorithm 2 Spectral deferred correction

1. for j = 1 to J do

2. Compute an approximation Y
[0]
j = (y

[0]
j,1,y

[0]
j,2, . . . ,y

[0]
j,n) to IVP (1) at the

spectral nodes tj,i ∈ [tj,1, tj,n], i = 1, 2, . . . , n.
3. for k = 1 to K do
4. Form the continuous solution Y

[k−1]
j (t).

5. Compute the approximate residual R
[k−1]
j (Y[k−1]) by (14).

6. Solve the IVP (12) using a method of order pk to compute an approxi-

mation to the error E
[k−1]
j = (e

[k−1]
j,1 , . . . , e

[k−1]
j,n ).

7. Form the new approximate solution Y
[k]
j = Y

[k−1]
j + E

[k−1]
j .

8. end for
9. end for

10. return Y
[K]
j (tj+1), using extrapolation if necessary.

and after rearranging

d

dt
e[k](t,Y[k](t)) + δ[k](t,Y[k](t)) = f

(
t,Y[k](t) + e[k](t,Y[k](t))

)
− f(t,Y[k](t)).

This can be expressed as

(16)
d

dt

[
e[k](t,Y[k](t)) +

∫ t

a
δ[k](t′,Y[k](t′)) dt′

]
= f
(
t,Y[k](t) + e[k](t,Y[k](t))

)
− f(t,Y[k](t)),

or after using (15) and (10),

d

dt

[
e[k](t,Y[k](t)) + Y[k](t)−

∫ t

a

f(t′,Y[k](t′)) dt′
]

= ∆f [k](t,Y[k](t)).

IDC has recently been presented as exclusively solving the error equation on (uni-
form) subdivisions (or groups of nodes) of the original mesh [9, 10]. This construction
in itself improves the quality of the results, and it is also possible to contemplate
adaptive time steps on the primary grid [8].

The IDC algorithm is applied independently to each group of nodes (4) within
[tj , tj+1] using

(17)
d

dt

[
ej(t,Y

[k−1]
j (t)) +

∫ t

tj

δ[k](t′,Y[k](t′)) dt′
]

= ∆f [k−1](t,Y
[k−1]
j (t)).

It is understood that the algorithm is iterated completely on each group of nodes
before moving on to the next.

Note that discretization of (17) also approximates the integral by a quadrature
formula. For example, if the discretization is by the forward Euler method, then we
have

e
[k]
j,i+1 = e

[k]
j,i − (y

[k]
j,i+1 − y

[k]
j,i)

+ ∆t
(
f(tj,i,y

[k]
j,i + e

[k]
j,i)− f(tj,i,y

[k]
j,i)
)

+

∫ tj,i+1

tj,i

f(t′,Y
[k]
j (t′)) dt′,
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Algorithm 3 Integral deferred correction

1. for j = 1 to J do

2. Compute the initial approximation Y
[0]
j = (y

[0]
j,1,y

[0]
j,2, . . . ,y

[0]
j,n) at the points

tj,l ∈ [tj,1, tj,n], l = 1, 2, . . . , n, using a method of order p0.
3. for k = 1 to K do
4. Form the continuous solution Y

[k−1]
j (t).

5. Compute the defect δ
[k]
j (t,Y

[k−1]
j (t)) using (15).

6. Solve the ODE (17), with initial condition ej(tj ,Y
[k−1]
j (tj)) = 0, using a

method of order pk to compute an approximation to the error E
[k−1]
j =

(e
[k−1]
j,1 , . . . , e

[k−1]
j,n ) at the points tj,l ∈ [tj,1, tj,n] l = 1, 2, . . . , n.

7. Form the new approximate solution Y
[k]
j = Y

[k−1]
j + E

[k−1]
j .

8. end for
9. end for

10. return Y
[K]
j (tj+1), using extrapolation if necessary.

and replacing the integral with a quadrature formula

(18) e
[k]
j,i+1 = e

[k]
j,i − (y

[k]
j,i+1 − y

[k]
j,i)

+ ∆t
(
f(tj,i,y

[k]
j,i + e

[k]
j,i)− f(tj,i,y

[k]
j,i)
)

+ ∆t

n∑
i=1

Sj,if(tj,i,y
[k]
j,i),

where the quadrature weights Sj,i can be defined, e.g., by integrating the basis func-
tions of the Lagrange form of interpolating polynomial

Sj,i =

∫ tj,i+1

tj,i

`j,i(t) dt =

∫ tj,i+1

tj,i

n∏
i′=1
i′ 6= i

t− tj,i′
tj,i − tj,i′

dt.

We observe that if SDC is formulated using uniform nodes, equation (18) is recovered.
Further, an IDC method, constructed using (n + 1) quadrature nodes and (K +
1) prediction plus correction iterations of an s-stage explicit RK method, can be
reformulated as a ((K + 1) s n)-stage RK method [8].

If the error equation (17) at iteration k is discretized using a method of order pk,

the corrected solution is of order

K∑
j=0

pj if the quadrature is sufficiently accurate and

if uniform nodes are used. If non-uniform nodes are used, only order (p0 +K) can be
guaranteed [9].

3.4. Parallel Deferred Correction. The deferred correction framework can
allow for task-level parallelism, where multiple levels of correction can be computed
simultaneously. This was recently observed, implemented, and discussed for RIDC
methods [10], but the idea can be broadly applied to the classes of deferred correction
equations previously discussed. Recall that the time domain is divided into J intervals,
equation (3), and each subinterval is further subdivided using n nodes, equation (4).
To describe the algorithm, it is convenient to consider nodes that include the endpoints
of each interval,

tj = tj,1 < tj,2 < · · · < tj,n = tj+1 j = 0, 1, . . . , J − 1,
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and relabel these nodes in a global order,

τm′ = tj,i, m′ = 0, 1, . . . ,M,(19)

where τ0 = a, j = m′÷ (n− 1), i = (m′ mod (n− 1)) + 1 and M = J(n− 1). Instead
of iterating the CDC, SDC, or IDC algorithm completely on each group of nodes, one
first observes that equations (6), (12), and (16), respectively, can be solved directly
using a piecewise continuous approximation to Y[k−1](t). This allows us to change
the order of the loops in Algorithms 1, 2, and 3. For example, a modified classical
deferred correction algorithm is given in Algorithm 4.

Algorithm 4 Modified classical deferred correction

1. Compute an initial approximation Y[0] = (y
[0]
0 ,y

[0]
1 , . . . ,y

[0]
M ) to IVP (1) using a

method of order p0.
2. for k = 1 to K do
3. Form the piecewise continuous solution Y[k−1](t).
4. Solve the IVP (6) using a method of order pk to compute an approximation

to the error E[k−1] = (e
[k−1]
0 , . . . , e

[k−1]
M ).

5. Form the new approximate solution Y[k] = Y[k−1] + E[k−1].
6. end for
7. return y

[K]
M

It has been shown numerically that the modified methods are stable provided
the predictor is stable [10]. Although the modified CDC, SDC, and IDC algorithms
can be shown to have the same asymptotic convergence behavior as their CDC, SDC,
and IDC counterparts, the final solution generated by the modified algorithms is
generally less accurate because the correction equations are not iterated to completion
(level K) on each group of nodes; i.e., the integrator at level k, k < K, proceeds
using information from levels k′ < k. The benefit of approximating the solution
using the modified equations is the possibility for pipeline parallelism, where multiple
correction levels can be simultaneously computed. Specifically, once a “piece” of the
piecewise continuous solution Y[k−1](t) can be constructed, iterate k can be computed
while iterate (k − 1) continues its computation. This idea is illustrated in Figure 1,
where a first-order predictor is updating a provisional solution from tj−1 to tj , while
corrector k computes an approximation to the error at time tj−kn in a pipeline-parallel
fashion. For uniformly spaced nodes, a “sliding stencil” of minimal sizes is possible,
as illustrated in Figure 2, reducing the memory footprint and the lag interval of a
pipeline parallel implementation [10].

3.5. Analysis of Parallel Speedup and Efficiency. We present an analysis
of the efficiency of a parallel implementation of CDC using a forward Euler integra-
tor. In the notation introduced previously, we have J groups of n nodes (4), where
for simplicity we assume each group contains both endpoints (and hence n ≥ 2). We
assume that function evaluations all require the same amount of computation time
and that memory access/communication overhead is negligible compared to this com-
putation time. Thus, (non-concurrent) function evaluations can be used as a proxy
for computational time.

The forward Euler method requires one function evaluation per node for comput-
ing the provisional solution and one function evaluation per node for each correction
step. Thus, the provisional solution requires J(n − 1) function evaluations and each
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Predictor

First Correction

Second Correction

Third Correction

Fourth Correction

Fifth Correction

t. . . t4 t5 t6 t7 t8 t9 t10t11 t12t13t14 t15t16t17 t18t19t20 . . .

Fig. 1. The deferred correction framework allows for task-level parallelism, where multiple
levels of correction can be computed simultaneously. While the first-order predictor is updating a
provisional solution from tj−1 to tj , corrector k is able to compute an approximation to the error
at time tj−kn provided that a sufficiently accurate interpolant can be constructed. Here, each group

of Gauss–Lobatto nodes generates a sixth-order piecewise interpolant that approximates Y[k](t).

Predictor

First Correction

Second Correction

Third Correction

t. . . tj−6 tj−5 tj−4 tj−3 tj−2 tj−1 tj . . .

Fig. 2. The deferred correction framework allows for task-level parallelism, where multiple
levels of correction can be computed simultaneously. While the first-order predictor is updating a
provisional solution from tj−1 to tj , corrector k is able to compute an approximation to the error at
time tj−k provided that a sufficiently accurate interpolant can be constructed. The minimum stencil
sizes required by each corrector, assuming uniform nodes, are shown for the respective levels.

correction requires J(n− 1) function evaluations, giving a total of

fevalserial = J(n− 1)(1 +K),

where K is the number of corrections taken. This is also the time measure for a serial
implementation. For a parallel implementation, we assume that the first correction
step may begin once the initial solution has been computed for the first group of nodes,
and similarly that the second correction step may begin once the first correction has
been computed for the first group of nodes, and so on. For K corrections, this allows
the utilization of K + 1 processors for computation, provided there are sufficiently
many groups (ideally J � K). We count only the number of non-concurrent function
evaluations in our evaluation of the parallel implementation. For K corrections, the
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number of non-concurrent function evaluations in a parallel implementation is

fevalparallel = J(n− 1) +K(n− 1).

The speedup of a parallel method is given by

SnP
=

T1
TnP

,

where nP is the number of processors and Ti is the execution time for a computation
performed with i processors. A speedup greater than 1 indicates that a computation
takes less time to run when additional processors are utilized. In the ideal case,
a speedup of nP is obtained when nP processors are utilized, leading to a parallel
efficiency EnP

= SnP
/nP of 1. The speedup for the parallel CDC as described above

with K + 1 processors is then

SK+1 =
J(n− 1)(1 +K)

(n− 1)(J +K)
=
J(1 +K)

J +K
.

In the case when J = 1, we obtain SK+1 = 1, independent of K; i.e., there is no
opportunity for parallelization for the case of only one group, and the computation is
necessarily serial. In the case when J � K, we obtain SK+1 ≈ 1 + K, showing that
the speedup improves as K increases. The parallel efficiency is

EK+1 =
SK+1

K + 1
=

J

J +K
,

which approaches 1 for J � K.

4. Numerical Experiments. We now perform a number of numerical experi-
ments to illustrate some of the behaviors of the deferred correction methods described
by means of the following test problems:

1. A linear, non-autonomous system,

d

dt
y(t) =

(
ty2(t) + y1(t)
−ty1(t) + y2(t)

)
, 0 < t < 1,

y(0) =

(
1
1

)
,

with exact solution, y(t) =

(
et
(
cos(0.5t2) + sin(0.5t2)

)
et
(
cos(0.5t2)− sin(0.5t2)

)) .
2. A system of ODEs arising from a methods-of-lines discretization of the Brus-

selator equation in R1

ut = A+ u2v − (B + 1)u+ αuxx,(20)

vt = Bu− u2v + αvxx,

We discretize the spatial derivatives by centered differences and use the parameters
A = 1, B = 3, and α = 0.02, initial conditions

u(x, 0) = 1 + sin(2πx), v(x, 0) = 3,

and boundary conditions

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3.
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3. A restricted three-body problem, known as the Arenstorf orbit problem [19],
whose solution gives the orbit (y1, y2) of a light object, e.g., a satellite, moving under
the influence of gravity of two heavy objects,

ÿ1 = y1 + 2ẏ2 − µ′
y1 + µ

D1
− µy1 − µ

′

D2
,

ÿ2 = y2 − 2ẏ1 − µ′
y2
D1
− µ y2

D2
,

D1 =
(
(y1 + µ)2 + y22

)3/2
, D2 =

(
(y1 − µ′)2 + y22

)3/2
,

µ = 0.012277471, µ′ = 1− µ.

(21)

Choosing the initial conditions

y1(0) = 0.994, ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = −2.001585106379,

gives a closed periodic orbit with period 17.065216560159.

4.1. Order of Accuracy. We use test problem 1 to illustrate the expected order
of accuracy that can be expected for deferred correction methods. Suppose that we
have J groups of n nodes, as described in equation (4). If these nodes are uniformly
distributed, we recall (7) that CDC methods can attain order

min (PK , n− 1),

where p0 is the order of the integrator used to construct the provisional solution,
pk is the order of the integrator used to compute the numerical approximation at
level k, K correction steps are taken, and PK =

∑K
k=0 pk. Figure 3 shows that the

expected orders of accuracy are observed when forward Euler integrators are used
with an n = K + 1 quadrature nodes for K corrections. Figure 4 shows that the
expected orders of accuracy are observed when an RK3 integrator is used to generate
the provisional solution and an RK2 corrector is used to solve the error equation (6).

The story is similar if SDC and IDC methods are constructed using uniform nodes.
For J groups of n nodes, these methods can attain order

min (PK , n).

We note that the attainable order now depends on n instead of n− 1 because neither
SDC nor IDC differentiates the interpolant. Figure 5 shows that the expected orders
of accuracy are observed when forward Euler integrators are used. Figure 6 shows
that the expected orders of accuracy are observed when an RK3 integrator is used
to generate the provisional solution and an RK2 corrector is used to solve the error
equation (17).

The story gets more interesting if non-uniform nodes are used. We consider CDC
methods constructed with J groups of n nodes (4), where each group of n nodes are
Gauss–Lobatto nodes, and forward Euler integrators are used to solve test problem
1 and the associated error equation (6). Figure 7 shows that after one correction,
the accuracy and order of convergence improves, but with successive corrections,
the accuracy improves while the order of accuracy remains stagnant at one. This
has previously been observed in [20]. The observed behavior can be explained as
follows: (i) the discrete smoothness of a discrete data set [9] precludes an increase
in the order of accuracy for CDC methods constructed using general non-uniform
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Fig. 3. Error as a function of the number of intervals for various classical deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (6). The
method with K corrections uses (K + 1) uniformly spaced nodes per interval. The expected orders
of accuracy are observed.
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Fig. 4. Error as a function of the number of intervals for various classical deferred correction
methods. An RK3 integrator is used to solve test problem 1, and an RK2 integrator is used to solve
the error equation (6). The method with one correction uses six uniformly spaced quadrature nodes
in each interval. The method with two corrections uses eight uniformly spaced quadrature nodes in
each interval. The expected orders of accuracy are observed. The error stagnates at 10−10, likely
due to quadrature error arising from the high-order interpolant.

nodes, including Gauss–Lobatto, Gauss–Legendre, and Chebyshev nodes. For this
example, the exception is (ii) the special case where three Gauss–Lobatto nodes are
used because they are in fact three uniformly space nodes; thus, the method with
one correction is able to attain second order. A similar behavior is observed if the
midpoint method is used to solve test problem 1 and the associated error equation (6).
Figure 8 shows that the accuracy improves with more corrections although the order
of accuracy remains stagnant at two.

For SDC/IDC methods, the discrete smoothness of non-uniform nodes guarantees
only one order of accuracy increase with each correction [9]. The maximum order of
accuracy that can be attained depends on two factors: (i) the order of the quadra-
ture formula, and (ii) whether the quadrature nodes (4) include the endpoints of the
interval. If the quadrature nodes include the endpoints of the interval, the maximum



16 B. W. ONG and R. J. SPITERI

15 20 25 30

10−11

10−8

10−5

10−2

Number of Intervals

A
b

so
lu

te
E

rr
or

Provisional
slope = 0.9

1 correction
slope = 2.0

2 corrections
slope = 3.0

3 corrections
slope = 4.0

4 corrections
slope = 5.1

Fig. 5. Error as a function of the number of intervals for various spectral deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (12).
The method with K corrections uses K uniformly spaced nodes per interval. The expected orders of
accuracy are observed.
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Fig. 6. Error as a function of the number of intervals for various integral deferred correction
methods. An RK3 integrator is used to solve test problem 1, and an RK2 integrator is used to solve
the error equation (17). The method with one correction uses five uniformly spaced quadrature nodes
in each interval. The method with two corrections uses seven uniformly spaced quadrature nodes
in each interval. The expected orders of accuracy are observed for the provisional solution and the
method with one correction. The error stagnates at 10−12, likely due to quadrature error arising
from the high-order interpolant.

order that the IDC/SDC method can attain is precisely the order of the quadrature
formula. The order of n-node Gauss–Lobatto quadrature is (2n − 2); the order of
n-node Gauss–Legendre quadrature is 2n; the order of n-node Chebyshev quadrature
is (n + 1) if n is odd and (n + 2) if n is even. If the quadrature nodes do not in-
clude the endpoints of the interval, e.g., Gauss–Legendre and Chebyshev nodes, then
the maximum order that can be attained is n because extrapolation is required. We
highlight these behaviors in the following numerical experiments.

We begin with SDC methods constructed using Gauss–Lobatto nodes and forward
Euler integrators applied to test problem 1. The method with one and two corrections
used three Gauss–Lobatto nodes in each interval. The methods with three and four
corrections used four Gauss–Lobatto nodes in each interval. The method with five
corrections used five Gauss–Lobatto nodes. Figure 9 shows that methods with one
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Fig. 7. Error as a function of the number of intervals for various classical deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (6). The
method with K corrections uses (K + 1) Gauss–Lobatto nodes per interval. The order of accuracy is
one, except for the special case where the method with one correction attains second order because
three Gauss–Lobatto nodes are equivalent to three uniformly spaced nodes.

15 20 25 30

10−7

10−5

10−3

Number of Intervals

A
b

so
lu

te
E

rr
or

Provisional
slope = 2.0

1 correction
slope = 2.0

2 corrections
slope = 1.9

Fig. 8. Error as a function of the number of intervals for various classical deferred correction
methods. The midpoint method is used to solve test problem 1 and the associated error equation (6).
The method with one correction uses five quadrature nodes in each interval. The method with two
corrections uses seven quadrature nodes in each interval. The order of accuracy stagnates at two,
the order of the underlying integrator.

additional correction add one order of accuracy as expected.
We repeat the experiment constructing methods using Gauss–Legendre nodes

and forward Euler integrators applied to test problem 1. The method with one and
two corrections used two Gauss–Legendre nodes in each interval. The methods with
three and four corrections used three Gauss–Legendre nodes in each interval. The
method with five corrections used four Gauss–Legendre nodes. Figure 10 shows that
the orders of accuracy of the methods are limited by the orders of the interpolating
polynomials (i.e., one less than the number nodes) because extrapolation is required
to construct the solution at the interval endpoint. By increasing the number of nodes
(order of the interpolating polynomial) in each interval for SDC methods constructed
with Gauss–Legendre nodes, we can still achieve one order of accuracy increase with
each correction. In Figure 11, each method with K corrections is constructed with
(K+1) Gauss–Legendre nodes in each interval. A method with K corrections achieves
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Fig. 9. Error as a function of the number of intervals for various spectral deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (12). The
method with one and two corrections used three Gauss–Lobatto nodes in each interval. The methods
with three and four corrections used four Gauss–Lobatto nodes in each interval. The method with
five corrections used five Gauss–Lobatto nodes. The expected orders of accuracy are observed.
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Fig. 10. Error as a function of the number of intervals for various integral deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (12). The
method with one and two corrections used two Gauss–Legendre nodes in each interval. The methods
with three and four corrections used three Gauss–Legendre nodes in each interval. The method with
five corrections used four Gauss–Legendre nodes. The order of accuracy of each method is limited
by the order of the interpolating polynomial used.
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order (K + 1) accuracy.
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Fig. 11. Error as a function of the number of intervals for various integral deferred correction
methods. Forward Euler integrators are used to solve test problem 1 and the error equation (12).
Each method with K corrections uses (K + 1) quadrature nodes and is able to achieve orders of
accuracy (K + 1).

If we instead construct IDC methods using Gauss–Lobatto nodes and higher-order
integrators, e.g., the second-order midpoint integrator, we expect to only see a one
order of accuracy increase for each correction due to the lack of discrete smoothness of
the non-uniform grid. However, interesting behavior is seen when the IDC methods
are applied to test problem 1. Similar to the experiment conducted to generate
Figure 9, we use four Gauss–Lobatto nodes in each interval for the method with one
correction (to allow for the possibility of fourth-order convergence) and five Gauss–
Lobatto nodes in each interval for the method with two corrections (to allow for the
possibility of sixth-order convergence). Figure 12 shows the convergence behavior of
these IDC methods. The method with one correction attains better-than-expected
convergence (fourth order instead of third order), the method with two corrections
attains the expected order of accuracy (fourth order). The observed results are not
in conflict with the analysis in Christlieb et. al [9] because the analysis guarantees
only one order of increase per correction. More interestingly, consider IDC methods
constructed using Gauss–Legendre and higher-order integrators, e.g., the second-order
midpoint integrator. Similar to the experiment conducted to generate Figure 11, we
use three Gauss–Lobatto nodes in each interval for the method with one correction (to
allow for the possibility of fourth-order convergence) and four Gauss–Lobatto nodes in
each interval for the method with two corrections (to allow for the possibility of sixth-
order convergence). Figure 13 shows that these IDC methods converge with order
PK , which is higher than the guaranteed order of increase discussed in [9]. Further
exploration and analysis into IDC methods constructed using Gauss–Legendre and
Chebyshev nodes may be a fruitful research direction.

The behaviors described in this section can be observed for different test prob-
lems or other integrators within the CDC/IDC/SDC methods, some of which are
described subsequently. The reader is able to numerically explore properties of de-
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Fig. 12. Error as a function of the number of intervals for various integral deferred correction
methods. The midpoint method is used to solve test problem 1 and the error equation (17). The
method with one correction uses four Gauss–Lobatto nodes in each interval; the method with two
corrections uses five Gauss–Lobatto nodes in each interval.
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Fig. 13. Error as a function of the number of intervals for various integral deferred correction
methods. The midpoint method is used to solve test problem 1 and the error equation (17). The
method with one correction uses three Gauss–Legendre nodes in each interval; the method with two
corrections uses four Gauss–Lobatto nodes in each interval.

ferred correction by downloading the MATLAB source code used to generate results
in this section.1

4.2. Pipeline Parallelism. To observe parallel speedup in DC methods, the
computational overhead of solving the error equations (i.e., computing the quadrature
approximation or interpolant in the respective error equations) must be inexpensive
compared to the cost of advancing the provisional solution from time t to t + ∆t.
Parallel speedup can be expected when evaluation of the ODE right-hand side is
expensive, as in case of N -body problems [10], or when solutions of nonlinear system
of equations arise when implicit integrators are used for the predictors or correctors.

The following numerical experiment demonstrates parallel speedup for the latter
case, where a nonlinear system of equations arises when the backward Euler integrator
is used to solve the Brusselator equation in R1, equation (20), and the IDC correction
equation, equation (17). The nonlinear system of equations is solved using a Newton
iteration. The RIDC software [33] and the GNU Scientific Library (GSL) are used to

1The software used to generate numerical results in this manuscript is hosted tempoarily at http:
//mathgeek.us/code/dcrev/. The final version of the MATLAB scripts/C++ files will be archived on
Zenodo with DOI entry upon acceptance of this manuscript, unless the journal has its own mechanism
for hosting source code affiliated with a manuscript.

http://mathgeek.us/code/dcrev/
http://mathgeek.us/code/dcrev/
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generate the timing results. The scaling studies were performed on a single computa-
tional node consisting of a dual socket Intel E5-2680v4 chipset. The interval [0, 10] is
used as a time domain, and the spatial domain is divided into 400 subintervals. Fig-
ure 14(a) shows a standard convergence study of RIDC. The order increases as more
correctors are used. We note that the method with five corrections only achieves fifth
order (instead of the anticipated sixth order). Figure 14(b) shows the results from
the same numerical experiment but with error plotted against walltime. Here, (p+ 1)
processors are used for RIDC integrators with p correctors. If the data markers line
up vertically, then the RIDC method would scale perfectly with no computational
overhead. The slight offset in data points can be interpreted as the overhead of the
RIDC method: there is a startup and shutdown phase where not all the processors
are marching with a full pipeline, as well as the communication/memory access over-
head, and the extra flops needed to compute the quadrature and interpolant. In this
numerical example, RIDC methods achieve over 90% efficiency when 800 time steps
are computed.
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Fig. 14. RIDC integrators (constructed using backward Euler integrators) used to solve the
Brusselator equation in R1.

4.3. Choice of Interpolant. Lastly, we observe that in most of the deferred
correction literature, including the numerical experiments above, the quadrature for-
mulas are obtained by constructing a Lagrange interpolating polynomial based on the
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quadrature nodes and then computing the corresponding quadrature weights using
the Lagrange polynomial. In some cases, however, it might be useful to utilize other
interpolants such as continuous extensions to numerical methods or cubic or Hermite
splines. This is potentially useful for pipeline implementations of deferred correction
methods. In this numerical experiment, we first solve the Arenstorf orbit problem
using classical deferred correction, where uniformly distributed nodes are chosen, and
a cubic spline interpolant is constructed, evaluated, and differentiated when solving
the error equation, equation (6). Figure 15 shows that although 105 time steps are
used for the predictor, the orbit is not closed. The CDC corrector (utilizing spline
interpolants) is able to correct the orbit to obtain a closer approximation to the ex-
pected periodic orbit. Special care must be taken to ensure that the splines provide a
sufficiently accurate approximation to the derivative (for classical deferred correction)
or the integral (for integral deferred correction).

−1 0 1

−1

0

1

(a) Predictor

−1 0 1

−1

0

1

(b) 1 Correction

Fig. 15. Solutions to the Arenstorf orbit problem. A uniform mesh with 105 time steps is used.
The predictor is the forward Euler integrator. The corrector uses the forward Euler intgrator and
cubic splines to solve the error equation (6).

5. Conclusion. In this manuscript, a survey is given of the main classes of de-
ferred correction methods for solving initial-value problems: classical deferred correc-
tion, spectral deferred correction, and integral deferred correction. A unified notation
is used to review the theoretical underpinnings, and an analysis of task parallelization
is presented to demonstrate how integration methods based on deferred correction
can be effective solvers on modern computer architectures. Numerical experiments il-
lustrate the order of accuracy that can be expected from deferred correction methods,
and a pipeline parallel implementation is reviewed for the integral deferred correction
framework. We also highlight that a wider choice of interpolant is possible than is
typically discussed in the literature and demonstrate a classical deferred correction
method constructed using spline interpolants.
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