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Abstract. In this work we discuss a class of defect correction methods which is easily adapted
to create parallel time integrators for multi-core architectures and is ideally suited for developing
methods which can be order adaptive in time. The method is based on Integral Deferred Correction
(IDC), which was itself motivated by Spectral Deferred Correction by Dutt, Greengard and Rokhlin
(BIT-2000).

The method presented here is a revised formulation of explicit IDC, dubbed Revisionist IDC,
which can achieve pth-order accuracy in “wall-clock time” comparable to a single forward Euler
simulation on problems where the time to evaluate the right-hand side of a system of differential
equations is greater than latency costs of inter-processor communication, such as in the case of the
N -body problem. The key idea is to re-write the defect correction framework so that, after initial
startup costs, each correction loop can be lagged behind the previous correction loop in a manner
that facilitates running the predictor and M = p−1 correctors in parallel on an interval which has K
steps, where K � p. We prove that given an rth-order Runge–Kutta method in both the prediction
and M correction loops of RIDC, then the method is order r × (M + 1).

The parallelization in Revisionist IDC uses a small number of cores (the number of processors
used is limited by the order one wants to achieve). Using a four-core CPU, it is natural to think
about fourth-order RIDC built with forward Euler, or eighth-order RIDC constructed with second-
order Runge–Kutta. Numerical tests on an N -body simulation show that RIDC methods can be
significantly faster than popular Runge–Kutta methods such as the classical fourth-order Runge–
Kutta scheme.

In a PDE setting, one can imagine coupling RIDC time integrators with parallel spatial evalu-
ators, thereby increasing the parallelization. The ideas behind RIDC extend to implicit and semi-
implicit IDC and have high potential in this area.
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1. Introduction. In this paper, we construct and analyze a class of novel time
integrators for initial value problems (IVP), known as Revisionist Integral Deferred
Correction methods (RIDC), which can be efficiently implemented with multi-core
architectures. We adopt the “revisionist” terminology to highlight that (1) this is a
revision of the standard IDC formulation, and (2) successive corrections, running in
parallel but lagging in time, revise and improve the approximation to the solution.
Although the RIDC schemes are presented in the integral deferred correction frame-
work, this new method can equivalently be viewed as a sequence of time steps with
an occasional “reset”.

Integral deferred correction (IDC) methods, also known in some instances as spec-
tral deferred correction (SDC), were first introduced by Dutt, Greengard and Rokhlin
[9], and were further developed in [1, 22, 21, 18, 19, 7, 6, 29, 23, 17]. An iterative cor-
rection procedure is used to correct an estimate of the solution by solving an integral
formulation of the error equation. While it has been demonstrated that IDC methods
are competitive with popular high-order Runge–Kutta (RK) integrators [6], there is
no systematic mechanism for spreading the workload on multi-core architectures for
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either IDC or popular RK methods. The issue is that both IDC and RK methods
are formulated in a sequential framework, in that a high-order approximation to the
solution at time t+ ∆t can not be computed until a high-order approximation to the
solution at time t is known. This drawback of a sequential integrators is an important
area to address as computing technologies are moving in the direction of multi-core
architectures, and many existing algorithms will need to be modified to effectively
make use of these advances.

Several approaches have been proposed to address the limitations of sequential in-
tegrators. In [31], Nievergelt proposed a framework for decomposing the time integra-
tion interval into sub-intervals, solving the initial value problem on each sub-interval
concurrently, and then enforcing continuity of the solution. In [30], Miranker and
Liniger discuss parallel integrators based on predictor/corrector ideas. This approach
leads them to a family of integrators, which are essentially second- and third-order
multi-step Adams schemes where certain steps can be computed in parallel, as well as
second- and third-order RK integrators, where certain stages can be computed in par-
allel. A more contemporary approach are the “parareal” algorithms, where the time
integration interval is once again divided into sub-intervals and a serial prediction
computation is performed, followed by a parallel corrective iteration and then a serial
corrective iteration. Discussion and analysis of parareal algorithms can be found in
[11, 12, 24, 27, 13]. There has also been recent work in [28], using SDC methods to
take successive parallel and serial corrective iterations. We note that parareal algo-
rithms appear particularly promising for solving IVPs when a very large number of
computing cores (e.g., > 32) are available.

Our proposed family of time integrators take a different approach in that the pre-
diction and correction loops are all performed in parallel. For example, in roughly the
same wall-clock time it would take to compute a first-order forward Euler approxima-
tion, our RIDC algorithm can compute a fourth-order approximation to the solution
of an IVP, provided four computing cores are available for the computation. If an even
higher-order integrator is required, the RIDC algorithm can compute an eighth-order
approximation to the solution in roughly the same amount of wall-clock time as a
forward Euler integrator, provided eight computing cores are available for the compu-
tation. Alternatively, on four cores, RIDC can achieve eighth order in the same wall
clock time as a second order RK integrator, provided that second order RK integrator
is embedded in IDC. A non-exhaustive list of applications where our RIDC algorithms
will be advantageous includes classic N -body simulations involving charged particle
interactions in plasmas [34, 8, 4], biological systems [2, 25], and gravitational bodies
[3, 16]. Additionally, one can imagine applying RIDC algorithms to explicit/implicit
solutions of PDEs with non-local operators such as Landau–Fokker–Planck [10] or
image processing applications [14].

This paper is divided into five main sections. In §2, IDC methods are reviewed
and RIDC methods are introduced. In §3, the implementation of RIDC methods in a
multi-core environment is discussed. Convergence and stability of RIDC methods are
presented in §4. Then, numerical benchmarks comparing IDC, RIDC, and popular
Runge–Kutta methods are given in §5, followed by conclusions in §6.

2. IDC and RIDC methods. In this section, we review IDC methods from [9],
and introduce our new RIDC methods. All of these methods compute an approximate
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solution to an IVP consisting of a system of ODES and initial conditions,{
y′(t) = f(t, y), t ∈ [a, b],
y(a) = α.

(2.1)

In this paper, we focus the bulk of our discussions on IDC and RIDC methods con-
structed using first-order forward Euler integrators, and note that IDC and RIDC
methods can easily be constructed using higher-order implicit and explicit RK inte-
grators if the time domain is discretized uniformly [7, 6].

IDC and RIDC methods are predictor-corrector schemes. Given an approximate
solution η(t) to the exact solution y(t), the error of the approximate solution is

e(t) = y(t)− η(t). (2.2)

If we define the residual as ε(t) = η′(t) − f(t, η(t)), then the derivative of the error
(2.2) satisfies

e′(t) = y′(t)− η′(t) = f (t, y(t))− f (t, η(t))− ε(t).

The integral form of the error equation can then be obtained,[
e(t) +

∫ t

0

ε(τ) dτ
]′

= f (t, η(t) + e(t))− f (t, η(t)) .

Substituting the definition for the residual gives[
e(t) + η(t)−

∫ t

0

f(τ, η(τ)) dτ
]′

= f (t, η(t) + e(t))− f (t, η(t)) . (2.3)

The basic idea of this paper is that while a single computing core is computing a
forward Euler predicted solution to IVP (2.1), other computing cores can simultane-
ously compute increasingly accurate corrections using equation (2.3). Each correction
revises the approximate solution, improving the accuracy by, for example, one order
of accuracy. Because each computation occurs simultaneously, high-order accurate
results are obtained in just slightly more wall-clock time than a forward Euler compu-
tation on a single processor computer. We first describe standard IDC methods, and
then introduce the revisions that result in a scheme that can be computed in parallel.

2.1. IDC methods. Suppose the time domain [a, b] is uniformly discretized into
N intervals, and the resulting nodes are enumerated and grouped such that there are
J groups of M intervals. Specifically, if ∆t = b−a

N , then the nodes

tn = n∆t, n = 0, . . . , N,

are enumerated

tj,m = (jM +m)∆t, m = 0, . . . ,M, j = 0, . . . , J − 1,

such that each grouping,

Ij = {tj,0, tj,1, . . . , tj,M}, j = 0, . . . , J − 1,

contains p = M + 1 nodes. This is illustrated in Figure 2.1
IDC methods are predictor-corrector schemes that iterate completely on each

group of intervals Ij sequentially, starting with j = 0. The idea is as follows.
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b b b b b b b b b b b
t0 t1 t2 t3 t4 t5 t6 · · ·

tN−3 tN−2 tN−1 tN

[t0,0 t0,1 t0,2 t0,3]

I0
[t1,0 t1,1 t1,2 t1,3]

I1

[tJ−1,0 tJ−1,1 tJ−1,2 tJ−1,3]

IJ−1

| {z }
| {z }

| {z }

Fig. 2.1: Enumerating nodes such that each grouping contains M = 3 intervals.

1. Suppose that the solution is known at tj,0. This is true for j = 0, where
η(t0,0) = α.

2. Using an integrator of choice, solve the IVP η′ = f(t, η) for a provisional
solution at all nodes contained in Ij . Denote this provisional solution as η[0]

j,m,
where m = 0, . . . ,M .

3. Solve the error equation (2.3), and use the error to obtain a corrected solution
at all nodes contained in Ij . Denote the solution after the first correction as
η
[1]
j,m, where m = 0, . . . ,M .

4. Repeat step 3 (M − 1) times, using the most recently corrected solution as
an approximation to the exact solution. Denote the solution after the lth

correction loop as η[l]
j,m, where m = 0, . . . ,M .

5. Use the accurately computed solution at tj,M to repeat the process for the
next group of intervals, Ij+1. Specifically, set η(tj+1,0) = η

[M ]
j,M , j ← j+ 1 and

return to step 1.
It was shown in [9] that if forward Euler integrators are used to solve for the provisional
solution in step 2, and M forward Euler corrections are applied in steps 3 and 4, then
the resulting algorithm is (M+1)st-order accurate. The IDC algorithm using forward
Euler integrators is written out explicitly in Algorithm 1, where line 19 shows a
forward Euler discretization of equation (2.3), manipulated to give an update formula
to the provisional solution η

[l−1]
j,m ,

η
[l]
j,m+1 = η

[l]
j,m + ∆t(f(tj,m, η

[l]
j,m)− f(tj,m, η

[l−1]
j,m )) +

∫ tj,m+1

tj,m

f(t, η[l−1](t)) dt

= η
[l]
j,m + ∆t(f(tj,m, η

[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + ∆t

M∑
i=0

Smif(tj,i, η
[l−1]
j,i ), (2.4)

where Smi are quadrature weights, compactly expressed in an integration matrix
whose elements are defined as integrals of Lagrange interpolating polynomials,

Smi =
∫ m+1

m

 M∏
k=0,k 6=i

t− k
i− k

 dt. (2.5)

2.1.1. IDC with Runge–Kutta integrators. It was shown in [6] that if an
rth-order Runge–Kutta integrator is used in the prediction and correction loops (in-
stead of forward Euler), then the order of accuracy of the IDC method increases
to order r × (M + 1). For example, if a trapezoidal RK-2 discretization of (2.3)
is performed instead, an update formula for the provisional solution, after algebraic
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manipulations, is

η
[l]
j,m+1 = η

[l]
j,m +

K1

2
+
K2

2
+ ∆t

M∑
i=0

Smif(tj,i, η
[l−1]
j,i ),

where

K1 = ∆t(f(tj,m, η
[l]
j,m)− f(tj,m, η

[l−1]
j,m )),

K2 = ∆t

(
f

(
tj,m + ∆t, η[l]

j,m +K1 + ∆t
M∑
i=0

Smif(tj,i, η
[l−1]
j,i )

)
− f(tj,m + ∆t, η[l−1]

j,m+1)

)
.

It was also shown in [6] that using higher-order integrators to solve for the provisional
and corrected solution results in IDC schemes with superior stability properties.

Input: endpoints {a, b}; initial condition α; number of intervals N ; order of
method p (Note that we require N to be divisible by M = p− 1, so
that there are J groups of M intervals)

(Initialize and pre-compute integration matrix)1

η−1 ← α, ∆t← b−a
N , M = p− 1, J = N

M2

for m = 0 to (M-1) do3

for i = 0 to M do4

Smi =
∫m+1

m
(
∏M

k=0,k 6=i
t−k
i−k ) dt5

end6

end7

for j = 0 to (J-1) do8

(Prediction Loop)9

η
[0]
j,0 ← ηj−110

for m = 0 to (M-1) do11

tj,m ← (jM +m)∆t12

η
[0]
j,m+1 ← η

[0]
j,m + ∆tf(tj,m, η

[0]
j,m)13

end14

(Correction Loops)15

for l = 1 to M do16

η
[l]
j,0 ← η

[l−1]
j,017

for m = 0 to (M-1) do18

η
[l]
j,m+1 ← η

[l]
j,m + . . .19

∆t(f(tj,m, η
[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + ∆t

∑M
i=0 Smif(tj,i, η

[l−1]
j,i )20

end21

end22

ηj+1 ← η
[M ]
j,M23

end24

Algorithm 1: IDCp-FE algorithm – a pth-order IDC method constructed using
forward Euler integrators for the prediction and correction loops.
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2.2. Revisionist IDC methods. The proposed RIDC algorithm relaxes the
requirement of iterating M correction loops completely in each group of M intervals,
Ij = {tj,0, tj,1, . . . , tj,M}. Instead, we allow each group to contain K intervals, where
K �M , but still iterate only M times, using a stencil size of (M +1) to approximate
the quadrature of the residual. For example, if K = N

2 , then there are J = 2 groups
and this modified grouping is illustrated in Figure 2.2.

b b b b b b b b b
t0 t1 t2 t3 · · ·

tK tK+1 tK+2 tK+3

· · ·
tN

[t0,0 t0,1 t0,2 t0,3 t0,K ]

I0
[t1,0 t1,1 t1,2 t1,3 t1,K ]

I1

| {z }
| {z }

Fig. 2.2: Enumerating nodes such that each grouping contains K + 1 nodes.

The RIDC algorithm for a pth-order method (using M = p− 1 Euler corrections)
is described in Algorithm 2. Note that if K = M , then the RIDC method is exactly
the previously formulated pth-order IDC method. We note that this algorithm could
also be considered as a sequence of K time steps after which a “reset” is performed,
where a reset takes the most accurate solution available at t = t? (namely η[M ](t?)),
and uses that solution as the “initial conditions” to restart the algorithm. The total
number of resets performed is J = N

K .
At first glance, RIDC appears to offer little benefit over IDC. However, if there are

multiple computing cores available to compute the portions of the algorithm simulta-
neously, then the result can potentially be computed faster. The implementation and
benefit of this RIDC generalization for multi-core architectures is described in §3, and
the analysis justifying this formulation is given in §4.

Lines 20 and 24 of Algorithm 2 use quadrature to approximate
∫ tm+1

tm
f(t, η(t)) dt.

The choice of stencils for this quadrature is not unique. In line 20, we have cho-
sen stencils that correspond to IDC methods if K = M ; specifically for m < M ,
we use function values at the nodes {t0, t1, . . . , tM}. The quadrature weights are
consequently elements of the integration matrix Smi, introduced earlier in equa-
tion (2.5). In line 24 (for m ≥ M), we have chosen the stencil which uses the
nodes {tm−M , tm−(M−1), . . . , tm}. Since we are working with nodes that are uniformly
spaced, the previously computed quadrature weights can be used to approximate the
integral at each time step,∫ tj,m

tj,m−1

f(t, η[l−1](t))dt ≈ ∆t
M∑
i=0

SM−1,if(tj,m−M+i, η
[l−1]
j,m−M+i).

2.3. RIDC methods with reduced stencils and order adaptivity. In both
Algorithm 1 and Algorithm 2 for pth-order IDC and RIDC methods respectively, the
integral of the residual is computed by fitting an M th-degree Lagrange polynomial
through a data set at every correction loop, and then performing quadrature on
that interpolating polynomial. However, it is not necessary to find the M th-degree
Lagrange interpolating polynomial at every correction loop. It suffices to find the lth-
degree Lagrange interpolating polynomial at the lth correction loop. In §3.1.1, we will
see that the reduced stencils corresponding to lower-degree polynomial interpolants



PARALLEL HIGH-ORDER INTEGRATORS 7

Input: endpoints {a, b}; initial condition α; number of intervals N ; order of
method p; number of correction loops M = p− 1; K intervals per
group (note that we require N to be divisible by K so that there are
J groups of K intervals)

(Initialize and pre-compute integration matrix)1

η−1 ← α, ∆t← b−a
N , J = N

K2

for m = 0 to (M-1) do3

for i = 0 to M do4

Smi =
∫m+1

m
(
∏M

k=0,k 6=i
t−k
i−k ) dt5

end6

end7

for j = 0 to (J-1) do8

(Prediction Loop)9

η
[0]
j,0 ← ηj−110

for m = 0 to (K-1) do11

tj,m ← (jK +m)∆t12

η
[0]
j,m+1 ← η

[0]
j,m + ∆tf(tj,m, η

[0]
j,m)13

end14

(Correction Loops)15

for l = 1 to M do16

η
[l]
j,0 ← η

[l−1]
j,017

for m = 0 to (M-1) do18

η
[l]
j,m+1 ← η

[l]
j,m + . . .19

∆t(f(tj,m, η
[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + ∆t

∑M
i=0 Smif(tj,i, η

[l−1]
j,i )20

end21

for m = M to (K-1) do22

η
[l]
j,m+1 ← η

[l]
j,m + ∆t(f(tj,m, η

[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + . . .23

∆t
∑M

i=0 SM−1,if(tj,m−M+i, η
[l−1]
j,m−M+i)24

end25

end26

ηj+1 ← η
[M ]
j,K27

end28

Algorithm 2: RIDC(p,K)-FE algorithm – a pth-order RIDC method con-
structed using K subintervals, and forward Euler integrators for the prediction
and M = p− 1 correction loops.

lead to faster start up times. Also lower-degree interpolating polynomials may be less
oscillatory [32]. Algorithm 3 describes the RIDC method with reduced stencils. Note
that the integration matrices can still be precomputed.

If one is willing to store the solution for an entire group of intervals, η[l]
j,m 0 ≤

m ≤ K, the error at tj,M can be estimated to determine if an additional correction
loop is required to guarantee that the error is below some tolerance. Note that this
form of p-adaptivity (i.e., adaptivity in terms of order) was not previously obvious
for pth-order IDC methods where there was little motivation for taking fewer than M
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correction loops, and no obvious way to make use of previously computed values to
generate an (p+ 1)st-order method.

Input: endpoints {a, b}; initial condition α; number of intervals N ; order of
method p; number of correction loops M = p− 1; K intervals per
group (note that we require N to be divisible by K so that there are
J groups of K intervals)

(Initialize and pre-compute integration matrices)1

η−1 ← α, ∆t← b−a
N , J = N

K2

for l = 1 to M do3

for m = 0 to (l-1) do4

for i = 0 to l do5

Sl
mi =

∫m+1

m
(
∏l

k=0,k 6=i
t−k
i−k ) dt6

end7

end8

end9

for j = 0 to (J-1) do10

(Prediction Loop)11

η
[0]
j,0 ← ηj−112

for m = 0 to (K-1) do13

tj,m ← (jK +m)∆t14

η
[0]
j,m+1 ← η

[0]
j,m + ∆tf(tj,m, η

[0]
j,m)15

end16

(Correction Loops)17

for l = 1 to M do18

η
[l]
j,0 ← η

[l−1]
j,019

for m = 0 to (l-1) do20

η
[l]
j,m+1 ←21

η
[l]
j,m + ∆t(f(tj,m, η

[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + ∆t

∑l
i=0 S

l
mif(tj,i, η

[l−1]
j,i )

end22

for m = l to (K-1) do23

η
[l]
j,m+1 ← η

[l]
j,m + ∆t(f(tj,m, η

[l]
j,m)− f(tj,m, η

[l−1]
j,m )) + . . .24

∆t
∑l

i=0 S
l
M−1,if(tj,m−M+i, η

[l−1]
j,m−M+i)25

end26

end27

ηj+1 ← η
[M ]
j,K28

end29

Algorithm 3: RIDC(p,K)-FE algorithm with reduced stencils – a pth-order
RIDC method constructed using K subintervals, forward Euler integrators for
the prediction and M = p− 1 correction loops, and reduced stencils.

3. Multi-core / Multi-cpu implementation. RIDC methods can be effi-
ciently computed in a multi-core, multi-cpu environment (e.g., an shared memory
machine), or graphics processing unit (GPU) environment, where information can be
conveyed rapidly from one computing core to another. In this section, we outline the
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strategy for using multiple computing cores, and discuss implementations for minimiz-
ing memory usage. The multi-core implementation of RIDC methods excels when the
function f(t, y) in equation (2.1) is expensive to compute. This is a realistic scenario
for many problems of interest.

3.1. Using multiple computing cores. We outline the strategy for using p
computing cores to solve an pth-order RIDC method given in Algorithm 2. These
ideas also extend to RIDC methods with reduced stencils given in Algorithm 3.

For each group of intervals Ij = {tj,0, tj,1, . . . , tj,K}, the strategy is as follows. We
drop the subscript j, with the understanding that this RIDC method is described for
one group of intervals, i.e., we set tm := tj,m and ηm = ηj,m.

• Start one computing core on the prediction loop to compute η[0]
m ,m = 1, . . . ,K

using the forward Euler scheme.
• Use a second core to compute the first correction loop, i.e., η[1]

m ,m = 1, . . . ,K,
once sufficient information is available from the prediction loop. Specifically,
the second core computes η[1]

m after η[0]
z , η[0]

z+1, . . . , η[0]
z+M have been computed

by the first computing core, where z = max(m−M, 0).
• Use a third core to compute the second correction loop, i.e., η[2]

m ,m = 1, . . . ,K,
once sufficient information is available from the first correction loop.

• Use a fourth core to compute the third correction loop, once sufficient infor-
mation is available from the second correction loop, and so on.

Figure 3.1 shows a schematic sketch of the information needed to compute η[2]
m

for a fourth-order RIDC method. Some care must be taken to ensure that the lth

processor does not overtake the (l − 1)st processor. This can be easily implemented
using the multiprocessing module in Python [33]. For optimal use of memory, the
lth processor should not get too far ahead of (l+1)st processor: that way, older values
of η[l] and f(η[l]) which are no longer needed can be discarded.

b b b b

b b b b

b b b b

b

bc

bc

bc

bc

prediction

correction (l = 1)

correction (l = 2)

correction (l = 3)

tm−3 tm−2 tm−1 tm tm+1. . . . . .

(a) RIDC with full stencils

b b

b b b

b b b b

b

bc

bc

bc

bc

tm−3 tm−2 tm−1 tm tm+1. . . . . .

(b) RIDC with reduced stencils

Fig. 3.1: The stencil needed to compute η
[2]
m is shown in the dashed region for a

fourth-order RIDC method. Additionally, this figure shows the minimum memory
“foot print” if special care is taken to minimize the amount of data that has to be
stored. Specifically, if the processors are not allowed to get too far ahead of each
other, then the minimum data values that have to be stored to compute the open
circles are shown as black dots. Central to our algorithm, is the realization that the
prediction and each of the three corrections can be computed simultaneously and
independently. After all four computations have completed, the oldest value at each
level can be discarded and the process repeated.
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3.1.1. Analysis of running time. The computing cores in the RIDC algorithm
cannot start simultaneously: each must wait for the previous to compute sufficient
η values. This is illustrated in Figure 3.2. The pth processor (running the M th

correction) must initially wait for M2 steps. This wait happens at the beginning of
each group of intervals. There are J = N

K groups of intervals overall. Thus, in theory,

bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc

0 1 2 3 6 9 12 13 . . .

0 4 5 6 9 12 13 . . .

0 7 8 9 12 13 . . .

0 10 11 12 13 . . .

prediction

correction (l = 1)

correction (l = 2)

correction (l = 3)

t0 t1 t2 t3 t4 . . .

(a) RIDC with full stencils

bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc

0 1 2 3 5 6 9 10 . . .

0 2 3 5 6 9 10 . . .

0 4 5 6 9 10 . . .

0 7 8 9 10 . . .

t0 t1 t2 t3 t4 . . .

(b) RIDC with reduced stencils

Fig. 3.2: Starting the RIDC4 algorithm. Each number indicates the step in which the
corresponding value of f(η) is computed. Here M = 3 and in (a) the third correction
waits M2 = 9 steps. In (b) the third correction waits for M(M+1)

2 = 6 steps.

a p-core implementation of a pth order RIDC method constructed using J groups
of K intervals and forward Euler integrators in the prediction and correction loops
(denoted RIDC(p,K)) can be computed in N + JM2 steps. This can be compared
to the forward Euler method running on a single processor which takes N steps. We
can consider the ratio as γ = N+JM2

N = 1 + M2

K .
For example, consider the scenario where one discretizes a time domain into 60

intervals, and applies a forward Euler time integrator. If that simulation takes one
minute on a single processor, then an RIDC(4,60) in theory will generate a fourth-
order solution in 1 minute and 9 seconds if four computing cores are available for the
computation. Here, γ = 1.15 and one would expect the RIDC simulation to take 15%
longer than that of forward Euler. The ratio γ decreases if K � M . For example,
a four core implementation of RIDC(4,600) in theory has a 1.5% increase in clock
time over a single core forward Euler time integrator with 600 intervals. Practical
implementation details, such as communication delays, shared memory overhead or
other interprocess communication issues, would be expected to increase the wall clock
time for the RIDC method. Actual timing tests are provided in §5 for a system of
interacting particles.

For the RIDC method with the reduced stencils, the start up delay for each
group of intervals is roughly halved: the ratio γ is reduced to γ = 1 + 1

K
M(M+1)

2 .
An obvious question to pose is how to choose K. As K increases, the ratio between
the computational and idle processor time increases. However, this apparent gain in
efficiency may be offset by an accumulation of error. A careful numerical study is
performed in Example 5.2.

3.2. Other RIDC algorithms. As discussed in §2.3, for truly p-adaptive (i.e.,
variable order) schemes, the error e[l]m of the solution after the lth correction could be
estimated before deciding whether to perform an additional correction. In terms of
implementation, this may require that the data for the entire lth correction level be
stored. The practicality and performance of p-adaptive schemes is not explored in
this paper.
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We have described RIDC using forward Euler integrators. However, if the number
of computing cores available is less than the order of the method desired, one could
consider embedding higher-order integrators in the prediction and/or correction loops,
as was done for IDC in [7, 6] and described in §2.1.1.

4. Convergence and stability of RIDC methods. We first discuss conver-
gence of RIDC methods, followed by the stability regions of RIDC methods, and the
impact of the number of intervals on the error.

4.1. Convergence of RIDC methods. The analysis in [7] (and summarized
in [6]), proving convergence under mild conditions for IDC methods, extends simply
to these RIDC methods.

Theorem 4.1. Let f(t, y) and y(t) in IVP (2.1) be sufficiently smooth. Then,
the local truncation error for an RIDC method constructed using K > p uniformly
distributed nodes {tk = kh, k = 0, . . . ,K}, an Euler prediction and M = p − 1 Euler
correction loops is O(hp+1).

Proof. The proof follows from the analysis in [7]. We simply replace {M ←
K, kl ← M} in Theorem 4.1 of [7], and the proof follows. We refer the reader to [7]
for the actual proofs.

Theorem 4.2. Let f(t, y) and y(t) in IVP (2.1) be sufficiently smooth. Then, the
local truncation error for an RIDC method constructed using K > M + 1 uniformly
distributed nodes {tk = kh, k = 0, . . . ,K}, an r0

th-order Runge–Kutta method in the
prediction loop, and (r1, r2, · · · , rM )th-order RK methods in the correction loops, is
O(hsM+1), where sM =

∑M
j=0 rj.

Proof. The proof follows from the analysis in [7]. We simply replace {M ←
K, kl ← M} in Theorem 5.3 of [7], and the proof follows. We refer the reader to [7]
for the actual proofs.

4.2. Stability of RIDC methods. Definition 4.3. The amplification factor
for a numerical method, Am(λ∆t), can be interpreted as the numerical solution to
Dalhquist’s test equation,

y′(t) = λy(t), y(0) = 1, (4.1)

after a time step of size ∆t for λ ∈ C, i.e., Am(λ∆t) = y(∆t).
Definition 4.4. The stability region, S, for a numerical method, is the subset

of the complex plane C, consisting of all λ∆t such that Am(λ∆t) ≤ 1,

S = {λ∆t : Am(λ∆t) ≤ 1} .

In Figure 4.1, we plot the stability regions for RIDC(4,4) and RIDC(4,40) after the
prediction and correction loops to show how the corrective loops alter the stability
regions. Note that to generate this plot, we take N = K = 4 and N = K = 40,
respectively, in Algorithm 2, and scale the resulting stability regions by the number
of intervals in the group, K. Correspondingly, one observes a circle of radius one
for the stability region after the predictive loop, which is consistent with the forward
Euler integrator used. Interestingly, RIDC(4,4) (which corresponds to the standard
fourth-order IDC method) encompasses an increasing amount of the imaginary axis
as the number of correction loops is increased, whereas the imaginary inclusion of the
RIDC(4,40) scheme is reduced after the second corrective loop.

The change in the shape of the stability region after the third correction loop for
RIDC(4,4) and RIDC(4,40) is not particularly surprising, since one might expect the
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(a) RIDC(4,4), which corresponds to the standard
fourth order IDC method.
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(b) RIDC(4,40)

Fig. 4.1: Stability regions for (a) RIDC(4,4) and (b) RIDC(4,40) are shown for the
prediction (simply that of FE) and each of the three corrections. The third correction
shows the actual stability of the method. While the radius of the largest disk that
can be contained in RIDC(4,40) stability region after third corrective loop is larger
than that of RIDC(4,4), the loss of the imaginary inclusion is disappointing.

stability region to approach that of forward Euler as K increases. Correspondingly,
we plot the stability regions for several fourth-order RIDC schemes, i.e., the stability
regions for RIDC(4,K) for various K in Figure 4.2. The main observations that one
should make are, for a fixed order (i) the amount of imaginary inclusion decreases as
the number of intervals K increases, and (ii) the stability region approaches that of
the forward Euler method as K increases.
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RIDC(4,200)

Fig. 4.2: Stability regions for RIDC methods for various K’s. Notice that the size
of the imaginary axis included decreases as the number of intervals K is increased.
However, the stability region approaches that of the forward Euler method as K
increases.

For completeness, we also present the plots of the RIDC methods with reduced
stencils in Figure 4.3. There is no discernible difference between the stability regions
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of RIDC methods with full stencils shown in Figure 4.1 and the RIDC methods using
the reduced stencils in Figure 4.3.
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(a) RIDC(4,4) w/ reduced stencils
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(b) RIDC(4,40) w/ reduced stencils

Fig. 4.3: Stability regions for (a) RIDC(4,4) with reduced stencils and (b) RIDC(4,40)
with reduced stencils. No significant differences are observed between the stability
regions for RIDC methods and RIDC methods using reduced stencils.

4.3. Choice of K, the number of intervals in each group. As mentioned
in §3, maximizing the ratio K

M for multi-core systems minimizes the amount of idle
processor time. However as the ratio K

M is increased, the overall accuracy of the
solution is expected to decrease. In §5 example 5.2, we explore the impact of the
number of intervals K for a test equation, noting that the optimal choice of K is
likely to be problem dependent.

5. Numerical benchmarks. Example 5.1. This first example validates the
order of accuracy of the constructed RIDC schemes. We consider the initial value
problem {

y′(t) = 4t
√
y, t ∈ [0, 5],

y(0) = 1. (5.1)

which has the analytic solution y(t) = (1 + t2)2.
Table 5.1 shows the error and rate of convergence for the RIDC schemes, where

RIDC(p, 40) denotes the pth-order RIDC scheme described in Algorithm 2, con-
structed using K = 40 intervals per group. The numerical solution was compared
to the analytic solution. In Table 5.2, a convergence test is shown for the RIDC
schemes using reduced stencils.

Example 5.2. In this example, we consider the nonlinear ODE system presented
in [1], 

y′1 = −y2 + y1(1− y2
1 − y2

2),
y′2 = y1 + 3y2(1− y2

1 − y2
2),

y(0) = (1, 0)T , t ∈ [0, 10],

(5.2)

which has the analytic solution y(t) = (cos t, sin t)T . We use this example to study
the choice of K, the number of intervals in each grouping. This particular problem
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– RIDC(2,40) RIDC(3,40) RIDC(4,40)
N error order error order error order
40 6.06e-03 – 4.77e-04 – 4.30e-05 –
80 1.30e-03 2.22 4.83e-05 3.30 2.26e-06 4.25
120 5.21e-04 2.26 1.19e-05 3.46 3.64e-07 4.51
160 2.73e-04 2.25 4.36e-06 3.49 9.80e-08 4.56
200 1.65e-04 2.24 2.01e-06 3.48 3.57e-08 4.53

– RIDC(5,40) RIDC(6,40)
N error order error order
40 3.31e-06 – 2.55e-07 –
80 8.82e-08 5.23 3.49e-09 6.20
120 8.92e-09 5.65 2.25e-10 6.76
160 1.70e-09 5.76 3.07e-11 6.93
200 4.75e-10 5.71 6.83e-12 6.73

Table 5.1: RIDC methods exhibit their expected rate of convergence on Example 5.1.
Here the error is the absolute error: the difference between the numerical and analytic
solution.

– RIDC(2,40) RIDC(3,40) RIDC(4,40)
N error order error order error order
40 6.06e-03 – 3.44e-04 – 2.25e-05 –
80 1.30e-03 2.22 3.12e-05 3.44 9.82e-07 4.52
120 5.21e-04 2.26 7.18e-06 3.66 1.35e-07 4.89
160 2.73e-04 2.25 2.45e-06 3.74 3.22e-08 4.99
200 1.65e-04 2.24 1.06e-06 3.76 1.07e-08 4.95

– RIDC(5,40) RIDC(6,40)
N error order error order
40 1.49e-06 – 9.91e-08 –
80 3.11e-08 5.58 9.88e-10 6.65
120 2.59e-09 6.13 4.92e-11 7.40
160 4.31e-10 6.23 5.95e-12 7.34
200 1.11e-10 6.06 1.49e-12 6.22

Table 5.2: RIDC methods with reduced stencils still exhibit their expected rate of
convergence on Example 5.1. Interestingly, the errors are smaller than that obtained
by RIDC methods with full stencils.

was chosen because additional properties of the system (e.g., the squared amplitude
error, y2

1 + y2
2 , and the corresponding phase error) can be studied in addition to the

error of the actual components.
In this numerical study, we fix the number of intervals at N = 1000, and show the

effect of the interval groupings in Figure 5.1 for RIDC(4,K). Three different measures
of error are shown and in all three, it appears advantageous to select K larger than
M = 4. There is a minimum in error for K between 40 and 100, after which the error
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increases again. We expect this minimum to be problem dependent.
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Fig. 5.1: Three different measures of error in Example 5.2 as a function of K. Here
the total number of intervals is held fixed at N = 1000 and RIDC(4,K) is used. Note
in each measure of error, the minimum occurs for K � 4.

Example 5.3. Our final example is the following one-dimensional N -body prob-
lem. Initially we have N+ ions uniformly spaced on the interval [0, 1], and N− elec-
trons also uniformly spaced on the interval [0, 1], so that the total number of particles
is NT = N+ + N−. The charge of each ion and electron is set to q+ = 1

N+
and

q− = − 1
N−

respectively so that the overall system is charge neutral. The mass of each
ion and electron is set to m+ = 1000

N+
and m− = 1

N−
, which is a physically reasonable

mass ratio to work with. Denote the ion locations and velocities as {x+
i , v

+
i }N

+

i=1 and
the electron locations and velocities as {x−i , v

−
i }N

−

i=1. Then, the equations of motion
are given by

[
x+

i

v+
i

]
t

=

 v+
i

q+
m+

(∑N+
j=1

q+(x+
i −x+

j )q
(x+

i −x+
j )2+d2

+
∑N−

j=1

q−(x+
i −x−j )q

(x+
i −x−j )2+d2

)  , i = 1, . . . , N+,

[
x−i
v−i

]
t

=

 v−i

q−
m+

(∑N+
j=1

q+(x−i −x+
j )q

(x−i −x+
j )2+d2

+
∑N−

j=1

q−(x−i −x−j )q
(x−i −x−j )2+d2

)  , i = 1, . . . , N−,

(5.3)

where d > 0 is a regularization constant. The initial conditions chosen are

x+
i (0) =

i− 0.5
N+

, v+
i (0) = 0, i = 1, . . . , N+,

x−i (0) =
i− 0.5
N−

, v−i (0) = sin
(
6πx−i (0)

)
, i = 1, . . . , N−.

The time to evaluate the right-hand-ride scales like the square of the number of par-
ticles.

We implement the RIDC algorithm on a multi-core architecture, and demonstrate
the speedup obtained with such an implementation. Our implementation uses the
multiprocessing module in Python [33]. Computations and timings are performed
on a 16-core machine: a Dell Poweredge R900 with four quad-core Xeon X7350 CPUs
running at 2.93 GHz sharing 32 GiB of memory.
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time ratio γ
Method N K theoretical actual theoretical actual error

FE 320 n/a 50.30s 8.63e00
RK4 320 n/a 201.20s 201.46s 4 4.01 9.32e-06

RIDC(4,N) 320 320 51.24s 59.14s 1.02 1.18 1.30e-03
RIDC(4,N/2) 320 160 52.19s 60.77s 1.04 1.21 3.66e-04
RIDC(4,N/4) 320 80 54.07s 62.73s 1.08 1.25 2.04e-04
RIDC(4,N/8) 320 40 57.84s 68.96s 1.15 1.37 5.81e-04

RK8 320 n/a 653.90s 666.74s 13 13.26 7.15e-11
RIDC8 320 320 55.96s 66.66s 1.11 1.33 4.19e-06

Table 5.3: Wall-clock timings on the particle problem. Fourth- and eighth- order
RIDC schemes utilize four and eight cores respectively, FE and RK schemes use only
one core. The “theoretical time” is based on comparing to the actual time of the
forward Euler method. For the Runge–Kutta schemes it is the number of stages (here
4 and 13 respectively) times the forward Euler time. For the RIDC schemes (with
reduced stencils), it is based on the analysis in §3.1.1.

Our simulations use 400 particles (N+ = N− = 200) and d = 0.05. Tables 5.3
and 5.4 compare the forward Euler integrator, fourth- and eighth-order RIDC (using
four and eight cores respectively), and two Runge–Kutta schemes (using one core
only). Here RK4 is the popular fourth-order Runge–Kutta scheme and RK8 is an
eighth-order, 13-stage Runge–Kutta [26]. For a fixed number of intervals N = 320,
Table 5.3 shows that the Runge–Kutta schemes take significantly longer than forward
Euler, whereas the RIDC methods take approximately the same wall-clock time as
forward Euler. We note the theoretical wall-clock time based on the analysis in §3.1.1
does not include overhead due to inter-process communication, latency or other con-
cerns. The actual observed ratios γ are close to, although larger than, their theoretical
values. It may be possible to improve our Python implementation. For fourth-order
RIDC, we observe the expected increase in γ for smaller values of K (fewer intervals
in each group). We observe a dependence of error on K which is consistent with the
results of Example 5.2.

The errors shown in Table 5.3 are potentially misleading in the sense that the
errors for RK4 and RK8 are superior to those of the RIDC methods. However,
the actual computation time is also much larger. A direct comparison between the
methods is in Table 5.4 where N is chosen such that each method computes the
solution at T = 10 in roughly the same fixed amount of wall-clock time. Here it is
clear that RIDC8 computed with eight cores is vastly superior to the other schemes
and in particular the eighth-order Runge–Kutta method.

Figures 5.2 and 5.3 show studies of the error in Example 5.3 for RIDC2 through
RIDC8 for a different numbers of intervals N . Table 5.4 can be seen as a vertical slice
through Figures 5.2 (right) and Figure 5.3 (right). The left plot of Figure 5.2 shows
the rate of convergence of second-, third- and fourth-order RIDC methods for the error
as a function of the number of intervals. We note that RIDC4 has a larger error per
step than the popular RK4 Runge–Kutta scheme by about one order of magnitude.
However, the right plot of Figure 5.2 shows the error as a function of the wall-clock
time, the appropriate measure of effectiveness for these multi-core simulations. Using
four cores, we observe a roughly twofold speedup in RIDC4 over the popular RK4
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Method N time error
FE 762 119.9s 3.60e00

RK4 191 121.4s 8.93e-05
RIDC(4,N) 656 120.3s 6.50e-05

RIDC(4,N/2) 650 119.4s 1.75e-05
RIDC(4,N/4) 636 119.6s 1.05e-05

RK8 58 120.7s 1.21e-04
RIDC8 600 119.5s 1.68e-08

Table 5.4: For a fixed amount of wall-clock time, the error at T = 10 resulting from the
various integrators is shown. These results are for the particle problem Example 5.3
and the error is the relative error in electron position. Note RIDC8 has lower error
than the other schemes.

integrator.
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Fig. 5.2: Convergence study for the particle problem (Example 5.3) using RIDC2,
RIDC3 and RIDC4 (using two, three, and four cores respectively) with K =
min(N, 160) and reduced stencils. A convergence study (left) shows the methods
achieve their design orders. In particular, note that RK4 has significantly better error
per step. However, examining the wall-clock time (right), reveals that RIDC4 can be
more efficient than RK4.

Figure 5.3 (left), we note that the higher-order RIDC5, RIDC6, RIDC7 and
RIDC8 schemes also achieve their design orders. In the wall-clock timings in Fig-
ure 5.3 (right), we see that RIDC8 running on eight cores significantly outperforms
RK4 and RK8, an eighth-order Runge–Kutta scheme [26]. In particular, RIDC8
can produce an error of 10−8 roughly 10 times faster than RK4 and roughly four
times faster than RK8. Put another way, given the same fixed amount of wall-clock
time, RIDC8 can produce an error roughly four orders of magnitude smaller than the
eighth-order Runge–Kutta scheme.

6. Conclusion. In this work we discussed a class of defect correction methods
which is easily adapted to create parallel time integrators for multi-core architectures.
The class is also well-suited for developing methods which can be order-adaptive in
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Fig. 5.3: Convergence study for the particle problem (Example 5.2) using high-order
RIDC5, RIDC6, RIDC7 and RIDC8 (using five, six, seven, and eight cores respec-
tively) with K = N and reduced stencils. A convergence study (left) shows the
methods achieve their design orders up to order 8. The wall-clock time (right) shows
that the RIDC significantly outperform high-order Runge-Kutta schemes.

time. The methods presented are a revised formulation of explicit integral deferred
correction, dubbed revisionist IDC, which can achieve pth-order accuracy in wall-clock
time comparable to a single forward Euler integration.

The key idea is to re-write the defect correction framework so that, after initial
startup costs, each correction loop can be lagged behind the previous correction loop
in a manner that facilitates running the M = p−1 correctors and predictor in parallel
on an interval which has K steps, where K � p. In addition, we proved that given an
rth-order Runge–Kutta method in both the prediction and correction loops of RIDC,
then the method is order r × (M + 1) after M correction loops.

Numerical experiments were presented to validate our parallel integrators. A
four-core implementation of fourth-order RIDC4 gives a speedup of roughly two over
the popular fourth-order Runge–Kutta integrator for an N -body problem. On the
same problem, eighth-order RIDC8 running on eight cores produces an error roughly
four orders of magnitude smaller than an eighth-order Runge–Kutta method in the
same wall-clock time.

The ideas behind RIDC extend to implicit and semi-implicit IDC [5] and have
high potential in this area. They also extend to other defect correction methods (e.g.,
[1]). The authors are presently exploring strong stability preserving [20, 15] and other
nonlinear stability properties of these RIDC schemes.

An interesting topic yet to be fully explored is the issue of adaptivity. With the
advent of modern day computing architectures such as the Intel Larrabee chip and
the Nvidia Tesla chip, it is not far fetched to imagine that a user might have access to
a large number of computing cores. The question arises thus, how do order-adaptive
RIDC methods (where, if the residual after the pth correction loop is too large, an
additional correction iteration is locally performed) compare with the usual paradigm
of locally refining the time step? In the order adaptive paradigm, efficient integrators
(such as RK4) can be embedded within the correction framework whereas in the
usual paradigm of locally refining the time step, the resulting non-uniform stencil
may constrain the RIDC method to incorporating only first order correctors. The
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authors are researching adaptive RIDC schemes.
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