
A PARALLEL SPACE–TIME ALGORITHM

ANDREW J. CHRISTLIEB ∗, RONALD D. HAYNES † , AND BENJAMIN W. ONG ‡

Abstract. With the continued evolution of computing architectures towards many-core com-
puting, algorithms that can effectively and efficiently use many cores are crucial. In this paper,
we propose as a proof of principle, a parallel space–time algorithm that layers time parallelization
together with a parallel elliptic solver to solve time dependent partial differential equations (PDEs).
The parallel elliptic solver utilizes domain decomposition to divide a spatial grid into subdomains,
and applies a parallel Schwarz iteration to find consistent solutions. The high-order parallel time in-
tegrator employed belongs to the family of Revisionist Integral Deferred Correction Methods (RIDC)
introduced by Christlieb, Macdonald and Ong in 2010, which allows for the small scale paralleliza-
tion of solutions to initial value problems. The two established algorithms are combined in this
proposed space–time algorithm to add parallel scalability. As a proof of concept, we utilize a frame-
work involving classical Schwarz matching conditions and RIDC integrators. It will be shown that
the resulting Schwarz iterations can be analyzed using standard domain decomposition analysis, and
that the required Schwarz iterations (at each time step) can be evaluated simultaneously in parallel,
after initial start-up costs. Additionally, it will be shown that if the domain decomposition iteration
converges for the prediction step, the domain decomposition iterations for the correction steps will
converge at the same rate. Numerical experiments demonstrate that the RIDC–DD algorithms attain
the designed order of accuracy. Several scaling studies are also performed.

Key words. Integral deferred correction, parallel time integrators, distributed computing,
domain decomposition.

AMS subject classifications. 65M55, 65Y05, 68M14

1. Introduction. For the foreseeable future, high performance computing will
be synonymous with “many-core” computing. In the field of scientific computing,
the development of algorithms that can utilize many cores effectively and efficiently
will be crucial. The present authors are interested in the numerical solution of time
dependent partial differential equations (PDEs). In this arena, a widely accepted
approach is to introduce spatial parallelism using domain decomposition (DD) [27].
Loosely speaking, DD methods fall in the class of data parallel algorithms, where a
domain of interest is divided into various subdomains, and the same task is performed
on each subdomain by a computing node. Each subdomain is assigned a different
computing node. While DD methods are largely successful, it is not practical to
increase the number of subdomains indefinitely.

In this paper, we present an algorithm to combine spatial parallelism with time
parallelism to improve scalability of existing parallel spatial solvers. This is accom-
plished by marrying DD methods with RIDC (revisionist integral deferred correction)
integrators, which are task parallel algorithms. The general idea is to utilize multiple
cores to perform parallel tasks on each subdomain.

RIDC integrators are “parallel across the step” integrators. The “revisionist”
terminology was adopted to highlight that (1) RIDC is a revision of the standard
integral defect correction (IDC) formulation [10, 7, 4] , and (2) successive corrections,
running in parallel but lagging in time, revise and improve the approximation to the
solution [3, 5]. The main idea is to re-write the defect correction framework so that,

∗Department of Mathematics, Michigan State University, East Lansing, MI 48824, an-
drewch@math.msu.edu
†Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,

NL, Canada, A1C 5S7, rhaynes@mun.ca
‡Corresponding author, Institute for Cyber Enabled Research, Michigan State University, East

Lansing, MI, 488824, ongbw@msu.edu

1

2 A. Christlieb, R. Haynes, B. Ong

after initial start-up costs, each correction loop can be lagged behind the previous
correction loop in a manner that facilitates running the predictor and correctors in
parallel.

As a proof of concept, we solve the linear heat equation and the advection–
diffusion–reaction equation implicitly using classical Schwarz matching conditions and
various RIDC integrators. Analysis and numerical experiments show that (1) the
Schwarz iterations will converge for the prediction and correction loops of a RIDC
algorithm, (2) as usual the rate of convergence is influenced by the size of the overlap
region, the size of the time step, and the number of subdomains, and finally, (3) the
RIDC–DD algorithm attains the designed order of accuracy in space and time.

For completeness, we mention that there are some parallel efforts towards devel-
oping algorithms that employ both spatial and temporal parallelization. For example,
Maday and Turinici [22] combine spatial domain decomposition with a “parareal in
time” algorithm [21], which is a temporal domain decomposition integrator (i.e. data-
parallel algorithm), to show that classical parallel iterative solvers can be combined
with parareal to allow for more rapid solutions if parallel architectures are available.
The parareal time integrator has two components which are alternately applied: a
coarse (cheap) integrator that is applied sequentially, and a fine (expensive) integra-
tor that is applied in parallel. Their preliminary analysis is promising. There is also
active research by Minion et al. [11] towards casting the parareal in time algorithm in
the defect correction framework, and combining this new parallel time integrator with
a spatial (potentially parallel) multi-grid solver. The framework that they propose
further couples the spatial and temporal components by utilizing a coarse mesh for
the coarse time integrator, and a fine mesh for the fine time integrator.

The remainder of the paper is organized as follows. In Section 2, DD and the
RIDC framework are reviewed, and then combined to form our hybrid scheme as
presented and analyzed in Section 3. Then, numerical experiments demonstrating
important features of our space–time approach are presented in Section 4, followed
by concluding remarks in Section 5.

2. Review. In this section we provide a brief review and bibliography of DD and
RIDC methods. In doing so we also establish necessary notation for the description
of our main algorithm in Section 3.

2.1. Domain Decomposition. Domain decomposition is a divide and conquer
approach for solving PDEs. First developed by Schwarz [26] as a theoretical tool to
establish existence of solutions for Laplace’s equation on irregular domains, it has
developed [28] into a robust tool for solving elliptic PDEs in distributed computing
environments. For example, several legacy codes such as CHOMBO [8] and ICEPIC [23]
incorporate spatial DD algorithms. The DD approach replaces the PDE by a coupled
system of PDEs over some partitioning of the spatial domain into overlapping or
non–overlapping subdomains. The coupling is provided by necessary transmission
conditions at the subdomain boundaries. These transmission conditions are chosen
to ensure the DD algorithm converges and to optimize the convergence rate.

To establish some necessary notation, suppose we wish to solve a PDE of the
form:

L(u) = 0, x ∈ Ω, (2.1)
B(u) = 0, x ∈ ∂Ω,

where L,B are some differential operators in the spatial variable x and Ω is the spatial

A PARALLEL SPACE–TIME ALGORITHM 3

domain. We begin our discussion in R1 where we assume Ω = [0, L]. Suppose Ω is
partitioned into D subdomains,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩD,

where Ωj = [αjL, βjL] with α1 = 0 and βD = 1. If αj+1 = βj then the subdomains
are non–overlapping, and overlapping if αj+1 < βj for j = 1, . . . , D−1. In general we
will assume Ωi∩Ωj = ∅ if |i− j| > 1, that is, only adjacent subdomains may overlap,
this requires βj ≤ αj+2 for j = 1, . . . , D − 2.

Here we will consider the simplest approach, overlapping classical Schwarz which
makes use of Dirichlet transmission conditions at the subdomain interfaces. To this
end, we solve (2.1) for u by composing the solutions of

L(uj) = 0, x ∈ Ωj , ∀j = 1, 2, . . . , D
uj(αjL) = uj−1(αjL),
uj(βjL) = uj+1(βjL).

The subdomain solutions, uj , are obtained by iteration. Here we iterate till conver-
gence so uj and uj+1 (for example) will agree within the overlap region. In practice
the solution in the overlap region may be obtained by averaging uj and uj+1. In this
paper we will be interested in the parallel Schwarz iteration. For k = 1, 2, . . ., solve

L(ukj) = 0, x ∈ Ωj , ∀j = 1, 2, . . . , D

ukj (αjL) = uk−1
j−1 (αjL),

ukj (βjL) = uk−1
j+1 (βjL).

Initial subdomain solutions at the interfaces are needed to begin the algorithm. Itera-
tions of the form (2.3) have been studied for many different classes of PDE, or choices
of L.

We now generalize the above presentation for higher dimensions and irregular
domains. Suppose that Ω ∈ Rn is still partitioned into D subdomains,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩD.

Then, overlapping classical Schwarz with Dirichlet transmission conditions decom-
poses the PDE (2.1) into the following system of PDEs:

L(uj) = 0, x ∈ Ωj , (2.2)
uj(zjl) = ul(zjl), zjl ∈ (∂Ωj ∩ Ωl), ∀j, l ∈ 1, 2, . . . , D.

Again, the subdomain solutions uj are obtained by iteration. For k = 1, 2, . . ., solve

L(ukj) = 0, x ∈ Ωj , (2.3)

ukj (zjl) = uk−1
l (zjl), zjl ∈ (∂Ωj ∩ Ωl), ∀j, l ∈ 1, 2, . . . , D.

It is important to note that the classical Schwarz iteration (2.3) is typically not
a practical method. Indeed in applications, overlapping subdomains are not possible
(for exampled coupled atmospheric and ocean models) and moreover convergence is
too slow. In practice, one must replace the Dirichlet boundary conditions with more
general transmission operators, resulting in optimized and optimal Schwarz methods,
see, for example, [15, 13, 16, 19].

4 A. Christlieb, R. Haynes, B. Ong

The primary problem of interest here is the solution of time dependent PDEs,

ut = N (t, u), x ∈ Ω× [0, T], (2.4)
B(u) = 0, x ∈ ∂Ω× [0, T],

u(0, x) = g(x), x ∈ Ω,

where N ,B are (possibly time dependent) spatial differential operators. DD ap-
proaches for problems of the form (2.4) can be broadly categorized as either: Schwarz
waveform relaxation methods, [17, 14, 12, 18], which partition Ω × [0, T] into over-
lapping or non–overlapping space–time domains, Ωj × [0, T], with ∪Dj=1Ωj = Ω, or,
methods which discretize the PDE in time and solve the sequence of elliptic problems
using DD approaches like (2.3), see [1, 2]. It is the latter approach which will be the
focus of this paper. A backward Euler discretization of (2.4) results in an elliptic
problem to be solved at each time step. A schematic of this approach is shown in Fig-
ure 2.1. The red arrows indicate MPI communications, required for the DD iteration,
between the subdomains located on each node.

t

t1 t2 tn

r r r

r r r
upon

convergence

Master

Node 0

Node 1

Schwarz Iteration
(until convergence)

Node 0

Node 1

Schwarz Iteration
(until convergence)

Node 0

Node 1

Schwarz Iteration
(until convergence)

Fig. 2.1: Communication diagram when backward Euler is used to integrate in time
with a classical Schwarz iteration in space.

2.2. RIDC. RIDC methods are a family of parallel time integrators that can
be broadly classified as predictor–corrector algorithms. The main idea is to correct
an inaccurate solution which was computed using a low order method (e.g. an Euler
integrator). The correction is computed by solving an error equation, which will be
derived in Section 2.2.1. It was shown previously in [10] that successive application
of the correction procedure not only increases the accuracy of the solution, but also
increases the formal order of accuracy of the scheme. A simple extension to incor-
porate parallelism was introduced by Christlieb, Macdonald and Ong in [3]. This
was accomplished by delaying each correction from the previous level, as illustrated
in Figure 2.2 for a backward Euler predictor and corrector – the white circles denote

A PARALLEL SPACE–TIME ALGORITHM 5

solution values that are computed simultaneously. This staggering in time means that
the predictor and each corrector can all be executed concurrently, in parallel.

b b

b b b

b b b b

b

bc

bc

bc

bc

prediction

1st correction

2nd correction

3rd correction

tn−3 tn−2 tn−1 tn tn+1.

Fig. 2.2: (RIDC4-BE) This plot shows the staggering required for a fourth order
RIDC scheme, constructed using backward Euler predictors and correctors. The time
axis runs horizontally, and the correction levels run vertically. The white circles
denote solution values that are computed simultaneously, e.g., core 0 is computing
the prediction solution at time tn+2 while core 1 is simultaneously computing the 1st
correction solution at time tn+1, etc.

2.2.1. Error Equation. Suppose an approximate solution η(t, x) to equation (2.4)
is computed. Denote the (unknown) exact solution as u(t, x). Then, the error of the
approximate solution is

e(t, x) = u(t, x)− η(t, x). (2.5)

Define the residual as ε(t, x) = ηt(t, x)−N (t, η(t, x)). The time derivative of the error
(2.5) satisfies

et = ut − ηt = N (t, u)− (N (t, η) + ε) .

The integral form of the error equation,[
e+

∫ t

0

ε(τ, x) dτ
]
t

= N (t, η + e)−N (t, η) , (2.6)

can then be solved for e(t, x) using the initial condition e(0, x) = 0, since we assume
that at t = 0, the initial condition is exactly specified. Equation (2.6) can be ma-
nipulated to give an expression for the corrected solution, η(t, x) + e(t, x). We note
that this approach of computing a correction to an approximate solution can be boot-
strapped. If an approximate solution is denoted as ηp(t, x), a correction ep(t, x) can
be computed, and a corrected solution ηp+1(t, x) = ηp(t, x) + ep(t, x) obtained. The
error of this corrected solution, ep+1(t, x), can then be computed to give a further
corrected solution, ηp+2(t, x) = ηp+1(t, x) + ep+1(t, x). With some algebra and the
bootstrapped notation, equation (2.6) can be expressed as[

ηp+1 −
∫ t

0

N (τ, ηp) dτ
]
t

= N
(
t, ηp+1

)
−N (t, ηp) . (2.7)

6 A. Christlieb, R. Haynes, B. Ong

2.2.2. Start-up and Shutdown. During most of a RIDC calculation, multiple
solution levels are computed in parallel using multiple computing cores (or as we will
see shortly for our parallel space time algorithm, multiple cores on multiple nodes).
However, the computing cores in the RIDC algorithm cannot start simultaneously;
each must wait for the previous level to compute sufficient η values before marching
all of them in a pipeline fashion. The order in which computations can be performed
during start-up is illustrated in Figure 2.3 for a fourth order RIDC constructed with
backward Euler integrators. The jth processor (running the jth correction) must
initially wait for j(j + 1)/2 steps.

bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc

0 1 2 3 5 6 9 10 . . .

0 2 3 5 6 9 10 . . .

0 4 5 6 9 10 . . .

0 7 8 9 10 . . .

prediction (node 0)

1st correction (node 1)

2nd correction (node 2)

3rd correction (node 3)

t0 t1 t2 t3 t4 . . .

Fig. 2.3: This figure is a graphical representation of how the RIDC4-BE algorithm
is started. The time axis runs horizontally, the correction levels run vertically. All
nodes are initially populated with the initial data at t0. This is represented by step 0
(enclosed in a circle). At computing step 1, node 0 computes the predicted solution
at t1. The remaining nodes stay idle. At computing step 2, node 0 computes the
predicted solution at time t2, node 1 computes the 1st corrected solution at time t1,
the remaining two nodes stay idle. Note that in this starting algorithm, special care
is taken to ensure that minimum memory is used by not letting the computing cores
run ahead until they can be marched in a pipeline; in this example, when node 3
starts computing t3.

In terms of shutdown, the calculation ends when the highest level (most accurate)
computation reaches the final time tN = b. Note that the predictor and lower level
correctors will reach tN = b earlier and as a consequence some computing threads will
sit idle.

2.2.3. Further Comments. Readers might be familiar with Spectral Deferred
Correction (SDC) methods [10] where one subdivides the time domain into discrete
(potentially non-uniform) intervals, 0 = t0 < t1 < · · · < tN = T . Each interval is
further subdivided using m Gauss-Legendre (or Gauss-Lobatto) nodes, ti = ti,0 <
ti,1 < · · · < ti,m−1 = ti+1. The SDC method is applied on each interval [ti, ti+1].
Indeed, the m Gauss-Legendre nodes are able to approximate the integral of the
residual with accuracy (2m− 1). Additionally, the initial condition used to start the
SDC method in each interval, is the most accurate solution obtained in the previous
interval. In a standard SDC formulation, the same stencil involving all the quadrature
nodes are used to approximate the integral for each correction equation.

In contrast, RIDC methods do not require that each interval is split into m
nodes. In fact, it is advantageous to subdivide each interval into M > m nodes to
improve the efficacy of the RIDC methods. As formulated, a reduced stencil, which
varies for each correction level, is used to approximate the integral for the correction

A PARALLEL SPACE–TIME ALGORITHM 7

equation. For example, only two quadrature nodes are used to approximate the
integral for the first correction equation (assuming first order predictors and correctors
are used), whereas three quadrature nodes are used to approximate the integral for
the second correction equation. The use of uniformly spaced nodes and reduced
stencils minimizes the overhead for starting a RIDC method, before the nodes can be
simultaneously marched in parallel. One could imagine a sequence of Gauss-Lobatto
nodes which are used to subdivide an interval at the cost of adversely affecting the
starting overhead for RIDC. The improved stability of RIDC constructed with Gauss-
Lobatto nodes might be advantageous, but is beyond the scope of this paper. Finally,
we comment that we cannot increase the order of RIDC constructed with uniformly
spaced nodes indefinitely as (i) it is not practical and (ii) the Runge phenomenon
[25], which arises from using equi-spaced interpolation points, will eventually cause
the scheme to become unstable. In practice, however, 12th order RIDC methods have
been constructed without any observable instability [6].

3. Space–Time Algorithm. We now describe a space–time algorithm combin-
ing the RIDC framework for integration in time with a classical, parallel, Schwarz
iteration in space. A Schwarz iteration is used within each prediction and correction
step. Recall the time dependent PDE of interest (2.4),

ut = N (t, u), x ∈ Ω× [0, T],
B(u) = 0, x ∈ ∂Ω× [0, T],

u(0, x) = g(x), x ∈ Ω,

where N ,B are (possibly time dependent) spatial differential operators. A schematic
of the Schwarz iteration and communication is shown in Figure 3.1. Two main events
occur for each step. First, the shared memory on each node (containing the memory
footprint for each grid point in the corresponding subdomain) is updated with the
converged Schwarz iteration solution from the previous step. This data intensive step
benefits from shared memory access. Second, there are four simultaneous Schwarz
iterations to obtain a fourth order method in time. Core p on every node performs
a Schwarz iteration for the pth correction step, (where p = 0 is the prediction loop).
Only boundary information is communicated for each Schwarz iteration, thus the
communication overhead for using MPI is minimal.

3.1. Prediction Level. We begin by semi–discretizing this problem in time.
Let un(x) denote our approximation to u(tn, x) obtained by a first order implicit
Euler discretization to equation (2.4). The prediction steps are given, for n = 1, 2, . . .
as

un+1 − un −∆tN (tn+1, un+1) = 0, x ∈ Ω,

B(un+1(z)) = 0, z ∈ ∂Ω,
(3.1)

with u0(x) = g(x). For each n we solve the elliptic problem (3.1) using a classical
Schwarz algorithm as described in Section 2.1, also cf. [1, 2]. Suppose Ω ∈ Rn is
partitioned into D overlapping subdomains,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩD.

8 A. Christlieb, R. Haynes, B. Ong

step n

r r r

r r r

r r r

r r rMaster

Node 0

Node 1

Node 0

Node 1

four Simultaneous
Schwarz Iterations

Fig. 3.1: RIDC framework for time integration with a classical Schwarz iteration in
space. For this RIDC4-DD illustration, it is assumed that each node, working on
a subdomain, has four cores with access to shared memory. After an initial start
up period, each step consists of updating the memory footprint, followed by four
simultaneous Schwarz iterations.

Then the following system of coupled PDEs have to be solved:

un+1
j − unj −∆tN (tn+1, un+1

j) = 0, x ∈ Ωj , ∀j ∈ 1, 2, . . . , D, (3.2)

un+1
j (zjl) = un+1

l (zjl), zjl ∈ (∂Ωj ∩ Ωl) \ ∂Ω, ∀j, l ∈ 1, 2, . . . , D,

B(un+1
j (z)) = 0, z ∈ ∂Ωj ∩ ∂Ω, ∀j ∈ 1, 2, . . . , D.

The subdomain solutions, un+1
j , are obtained by iteration. For k = 1, 2, . . ., solve

un+1,k
j − unj −∆tN (tn+1, un+1,k

j) = 0, x ∈ Ωj , ∀j ∈ 1, 2, . . . , D, (3.3)

un+1,k
j (zjl) = un+1,k−1

l (zjl), zjl ∈ (∂Ωj ∩ Ωl) \ ∂Ω, ∀j, l ∈ 1, 2, . . . , D,

B(un+1
j (z)) = 0, z ∈ ∂Ωj ∩ ∂Ω, ∀j ∈ 1, 2, . . . , D.

3.2. Correction Levels. After an initial wait, the RIDC framework computes
corrections to our approximation to un+1(x) in parallel. These correction steps are
also obtained using a Schwarz iteration. Before discretizing the error equation (2.7) in
time and space, we need to modify our notation to differentiate between successively
corrected solutions, as previously discussed in Section 2.2.1. We let u[p](t, x) denote
the approximation to u(t, x) obtained after the pth correction, and let un,[p](x) denote
the discretized approximation to u(tn, x) obtained after the pth correction. Hence,
un,[0](x) is the solution obtained at the prediction level, as described in Section 3.1.
With this notation, the error equation (2.7) becomes[

u[p+1] −
∫ t

0

N (τ, u[p]) dτ
]
t

= N
(
t, u[p+1]

)
−N

(
t, u[p]

)
. (3.4)

A PARALLEL SPACE–TIME ALGORITHM 9

With the change of variables q = u[p+1] −
∫ t
0
N (τ, u[p]), equation (3.4) becomes

qt = N
(
t, q +

∫ t

0

N (τ, u[p]) dτ
)
−N

(
t, u[p]

)
.

Applying an implicit backward Euler integrator gives

qn+1 − qn

∆t
= N

(
tn+1, qn+1 +

∫ tn+1

0

N (τ, un+1,[p]) dτ

)
−N

(
tn+1, un+1,[p]

)
.

Now, changing the variables back gives,

un+1,[p+1] − un,[p+1] −∆tN (tn+1, un+1,[p+1]) + ∆tN (tn+1, un+1,[p]) =
∫ tn+1

tn
N (t, u[p]) dt.

Applying a quadrature rule gives

un+1,[p+1] − un,[p+1] −∆tN (tn+1, un+1,[p+1]) + ∆tN (tn+1, un+1,[p]) =

p+1∑
ν=0

ανN (tn+1−ν , un+1−ν,[p]), if n ≥ p,

p+1∑
ν=0

αiN (tν , ui,[p]), if n < p,

(3.5)

where αν are quadrature weights used to approximate
∫ tn+1

tn
N (τ, u[p−1](τ)) dτ , i.e.,

αν =

∫ tn+1

tn

p+1∏
i=0,i6=ν

(t− tn+1−i)
(tn+1−l − tn+1−i)

dt, if n ≥ p,

∫ tn+1

tn

p+1∏
i=0,i6=ν

(t− ti)
(tl − ti)

dt, if n < p.

(3.6)

Several important observations should be made. Equation (3.5) is an elliptic equation
for the unknown variable un+1,[p+1] provided un+1,[p] and u·,[p] are known. This
elliptic equation will also be solved using the classical Schwarz algorithm described
in Section 2.1. Secondly, the number of terms in the sum (3.6) increases with level
p because the integral must be approximated with increasing accuracy. Finally, the
choice of uniform stencils picked for the quadrature is not unique; in practice, however,
the different quadrature stencils do not seem to significantly affect the accuracy of
the solution.

The coupled system of PDEs for the correction level are thus:

u
n+1,[p+1]
j − un,[p+1]

j −∆tN (tn+1, u
n+1,[p+1]
j) + ∆tN (tn+1, u

n+1,[p]
j) =

p+1∑
ν=0

ανN (tn+1−l, u
n+1−l,[p]
j), if n ≥ p,

p+1∑
ν=0

ανN (tl, ul,[p]j), if n < p,

x ∈ Ωj , ∀j ∈ 1, 2, . . . , D,

u
n+1,[p+1]
j (zjl) = u

n+1,[p+1]
l (zjl), zjl ∈ (∂Ωj ∩ Ωl) \ ∂Ω, ∀j, l ∈ 1, 2, . . . , D, (3.7)

B(un+1,[p+1]
j (z)) = 0, z ∈ ∂Ωj ∩ ∂Ω, ∀j ∈ 1, 2, . . . , D.

10 A. Christlieb, R. Haynes, B. Ong

These are solved by a parallel Schwarz iteration. For k = 1, 2, . . . solve

u
n+1,[p+1],k
j − un,[p+1]

j −∆tN (tn+1, u
n+1,[p+1],k
j) + ∆tN (tn+1, u

n+1,[p]
j) =

p+1∑
ν=0

ανN (tn+1−ν , u
n+1−ν,[p]
j), if n ≥ p,

p+1∑
ν=0

ανN (tν , uν,[p]j), if n < p,

x ∈ Ωj , ∀j ∈ 1, 2, . . . , D,

u
n+1,[p+1],k
j (zjl) = u

n+1,[p+1],k−1
l (zjl), zjl ∈ (∂Ωj ∩ Ωl) \ ∂Ω, ∀j, l ∈ 1, 2, . . . , D,

(3.8)

B(un+1,[p+1],k
j (z)) = 0, z ∈ ∂Ωj ∩ ∂Ω, ∀j ∈ 1, 2, . . . , D.

3.3. Convergence of the Parallel Schwarz Iteration. The convergence prop-
erties of the parallel Schwarz iterations for the prediction step (3.3) and correction
steps (3.8) follow quite naturally from the typical analysis of the Schwarz iteration
for the elliptic problems which result upon discretization in time, cf. [1, 2].

Denote the errors between the subdomain solution u
n+1,[p+1]
j and the iterates

u
n+1,[p+1],k
j by en+1,[p+1],k

j , ie.

e
n+1,[p+1],k
j = u

n+1,[p+1]
j − un+1,[p+1],k

j ,

for p = 0, 1, 2, 3. We use p = 0 to denote the solution of the prediction step.
Subtracting (3.3) from (3.2) and (3.8) from (3.7), we see the errors for the pre-

diction and all correction steps satisfy the same system

e
n+1,[p+1],k
j −∆t

[
N (tn+1, u

n+1,[p+1]
j)−N (tn+1, u

n+1,[p+1],k
j)

]
= 0, (3.9)

e
n+1,[p+1],k
j (zjl) = e

n+1,[p+1],k−1
l (zjl), zjl ∈ (∂Ωj ∪ Ωl) \ ∂Ω, ∀j, l ∈ 1, 2, . . . , D,

B(un+1,[p+1]
j (zjl)−B(un+1,[p+1],k

j (zjl)) = 0, zjl ∈ ∂Ωj ∪ Ω, ∀j ∈ 1, 2, . . . , D.

The contraction (to zero) of solutions of (3.9) are known for many operators
N including second–order linear elliptic problems (see Section 4), Navier–Stokes for
incompressible and compressible flows, and Euler’s equations of gas dynamics, see
for example [24]. The iteration for many of these problems are described for both
overlapping and non–overlapping domains, the latter requiring additional interface
conditions beyond the Dirichlet conditions of the classical Schwarz iteration presented
here. For example, if N is simply the diffusion operator d2/dx2, the contraction rate
for classical Schwarz, ρ, on two subdomains and over two iterations, is given by

ρ = exp (−2L/
√

∆t),

where L is the overlap, see for example [15]. As is typical, the contraction rate
improves as the overlap increases and the time step decreases.

Indeed the main observation is if a DD iteration is known to converge for the
solution of the prediction step (3.1), then the same DD iteration will converge for the
correction steps in the RIDC algorithm. Moreover, (3.9) suggests that the Schwarz
iterations for the prediction and correction steps will converge in approximately the

A PARALLEL SPACE–TIME ALGORITHM 11

same number of iterations (though the initial errors will be slightly different). Hence,
on any particular node, each core will finish its correction in unison, allowing the
algorithm to step forward seamlessly. That is, the algorithm enjoys a natural load
balancing.

4. Numerical Examples.

4.1. A First Example. We apply our parallel space–time algorithm, RIDC-DD
with classical Schwarz iteration in space, to the linear heat equation in two spatial
dimensions,

ut = uxx + uyy, Ω ∈ [0, 1]× [0, 1], t ∈ [0, 0.1],

u(0, x, y) = exp(−10
√

(x− 0.5)2 + (y − 0.5)2),
u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0.

The spatial derivative is approximated using centered finite differences. The domain
is discretized into 40 × 60 cells. These cells are then grouped into four overlapping
subdomains in a 2 × 2 grid, with an overlap of two cells. The Schwarz iterations
are performed until a tolerance of 10−12 is reached in the predictors and correctors.
In practice, this tolerance should be chosen in tandem with the local error tolerance
for the time integration, and potentially, a posteriori error estimates for the spatial
problem, cf. [20]. A reference solution is computed using a DIRK4 (Diagonally Implicit
Runge–Kutta) method on a single domain. The error is computed by mapping the
decomposed solution back to a single grid, taking averages in the overlap region as
necessary, and comparing the composed solution with the reference solution.

In Figure 4.1, the convergence plots show that our RIDC-DD algorithm with
classical Schwarz iterations in space converges with the designed orders of accuracy
in time.

10
−4

10
−3

10
−210

−15

10
−10

10
−5

10
0

dt

||
e|

| ∞

slope = 1

slope = 4

Prediction
1 Correction
2 Corrections
3 Corrections

Fig. 4.1: 2nd, 3rd and 4th order RIDC-DD with classical Schwarz iterations in space
converge to the reference solution with the designed orders of accuracy. The Schwarz
iterations are iterated until a tolerance of 10−12 is reached for the predictors and
correctors (hence the flat line attained after 3 corrections). Here, ∆x is fixed while
∆t is varied.

In Figure 4.2, a convergence study shows second order convergence in space for
the fourth order RIDC-DD algorithm as the spatial resolution is refined.

12 A. Christlieb, R. Haynes, B. Ong

Fig. 4.2: Second order convergence in space is demonstrated for the fourth order
RIDC-DD algorithm. Here, ∆t is fixed while ∆x is varied. The Schwarz iterations
are iterated until a tolerance of 10−12 is reached for the predictors and correctors.

In Figure 4.3, the average number of Schwarz iterations per time step are plot-
ted as a function of ∆t for both the prediction and correction Schwarz iterations.
Consistent with the analysis in Section 3.3, the average number of Schwarz iterations
decreases with ∆t for the predictors and correctors. Hence, it can be argued that there
will be minimal load balancing issues for this RIDC-DD algorithm as formulated.

10
−4

10
−3

10
−2

6

8

10

12

14

16

18

dt

A
v
e

ra
g

e
 #

 S
c
h

w
a

rz
 I

te
r

prediction
1 Correction
2 Corrections
3 Corrections

Fig. 4.3: This graph shows the average number of Schwarz iterations per time step
for various time step sizes, with a fixed tolerance. Each prediction and correction
takes the same number of Schwarz iterations for each step. This is due, in part, to
the stopping criterion for the Schwarz iteration being fixed at the same value for the
prediction and each correction loop. One could in practice relax the tolerance for the
prediction and the earlier correction levels.

As mentioned in Section 3.3, the convergence of overlapping Schwarz improves as
the size of the overlap region increases. We demonstrate this in Figure 4.4 by illus-
trating a representative convergence study at a fixed instant in the time integration
for varying amounts of overlap. The overlaps are chosen as 2∆x, 4∆x and 6∆x. As
expected, the rate of convergence improves as the number of cells in the overlap region
increases. In this plot, a time step of 2.5× 10−3 was used in addition to the domain
decomposition parameters described above. The rate of convergence was plotted for

A PARALLEL SPACE–TIME ALGORITHM 13

the final time step, t = 0.1.

0 10 20

10
−10

10
0

iterate

e
rr

o
r

overlap = 2

overlap = 4

overlap = 6

Fig. 4.4: Effect of overlap on the convergence of the Schwarz iteration for prediction
and correction steps. As the size of the overlap increases, the rate of convergence of
the classical Schwarz iteration increases.

To test the parallel efficacy of this algorithm, a hybrid OpenMP–MPI code was
developed. Implementation details will be discussed in a separate paper that will be
submitted to a computing science journal. The domain is discretized into 600 × 300
cells. These cells are then grouped into 18 overlapping domains in a 6 × 3 grid with
an overlap of 4 cells. As before the Schwarz iterations are performed until a tolerance
of 10−12 is reached. Figure 4.5 shows a soft scaling study, which shows that the
wall clock time to compute a first order (in time) DD solution with N = 18 cores is
approximately the same as the wallclock time to compute a pth order (in time) RIDC-
DD solution using pN cores. Error bars are computed using the standard deviation of
wall clock times based on ten numerical experiments per data point. The large error
bars are likely due to varying network traffic and architecture on the HPCC system
used.

Fig. 4.5: Weak scaling study for the linear diffusion equation. The wall clock time to
compute a first order (in time) solution using N cores is approximately the same as
the wallclock time to compute a pth order solution, using pN cores.

A hard scaling study is shown in Figure 4.6, where the heat equation is solved
using an eighth order RIDC-DD algorithm with a varying number of simultaneous

14 A. Christlieb, R. Haynes, B. Ong

Schwarz iterations, as dictated by the number of cores. (The number of subdomains
is held fixed at 18 for this study). If only 18 cores are available, then one OpenMP
thread is set for the RIDC loop, meaning that only one Schwarz iteration is performed
at a time. If 36 cores are available, then two OpenMP threads are set for the RIDC
loop, meaning that two simultaneous Schwarz iterations are performed, etc. It is
unclear presently if the drop in efficiency is due to (i) the higher network traffic that
results from the simultaneous Schwarz iterations, (ii) saturated memory bandwidth
or (iii) poor code design.

10
1

10
2

10
3

10
2

10
3

10
4

ti
m

e
 (

s
e

c
o

n
d

s
)

cores
0 50 100 150

0.7

0.8

0.9

1

e
ff
ic

ie
n
c
y

cores

Fig. 4.6: Hard scaling study for the linear diffusion equation. The wall clock time
to compute an eighth order (in time) RIDC-DD solution, using a varying number of
cores, is used to compute the efficiency of the method.

4.2. A Second Example. Next, we consider a linear advection–diffusion–reaction
equation

ut + a · ∇u = γ∆u− cu, x ∈ Ω = [0, 1]× [0, 1], (4.1)

u(0, x, y) = exp(−10
√

(x− 0.5)2 + (y − 0.5)2),
u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0.

where γ = 0.1, a = (1, 1), c = 1 [9]. Upwind differencing is used to approximate
the advection operator, and centered finite differences are used to approximate the
diffusion operator. Schwarz iterations are performed until a tolerance of 10−12 is
reached in the predictors and the correctors. The domain is discretized into 600×300
cells. These cells were then grouped into 18 overlapping domains in a 6× 3 grid with
an overlap of 4 cells. A soft scaling study and hard scaling study (described earlier
in Section 4.1) shows a similar behavior (in terms of speedup and efficiency) when
solving the advection–diffusion–reaction equation, see Figures 4.7 and 4.8.

5. Conclusions. In this paper we proposed a parallel space–time solver for
time–dependent PDEs based on domain decomposition in space and RIDC, a parallel
predictor–corrector method, in time. As a proof of concept, we utilize a framework
involving classical Schwarz matching conditions and RIDC integrators. We show that
the proposed algorithm, referred to as RIDC–DD for short, requires multiple Schwarz
iterations per step that can be evaluated simultaneously in parallel (after initial start-
up costs), provided the appropriate computing resources are available. Analysis is pre-
sented to demonstrate that RIDC–DD algorithms will converge, and that the rate of

A PARALLEL SPACE–TIME ALGORITHM 15

0 50 100 150
0

200

400

600

ti
m

e
 (

s
e

c
o

n
d

s
)

cores

B
E

R
ID

C
2

R
ID

C
3

R
ID

C
4

R
ID

C
5

R
ID

C
6

R
ID

C
7

R
ID

C
8

Fig. 4.7: Soft scaling study for the advection–diffusion–reaction equation. The wall
clock time to compute a first order (in time) solution using N cores is approximately
the same as the wallclock time to compute a pth order solution, using pN cores.

10
1

10
2

10
3

10
2

10
3

10
4

ti
m

e
 (

s
e

c
o

n
d

s
)

cores
0 50 100 150

0.7

0.8

0.9

1

e
ff
ic

ie
n
c
y

cores

Fig. 4.8: Hard scaling study for the advection–diffusion–reaction equation. The wall
clock time to compute an eighth order (in time) RIDC-DD solution, using a varying
number of cores, is used to compute the efficiency of the method.

convergence is consistent with results from standard domain decomposition analysis.
Numerical experiments demonstrate that RIDC–DD algorithms attain their designed
order of accuracy, and load balancing appears to be a non-issue with our implemented
version of the proposed algorithm. In practice, the tolerance for the DD iterations
should be chosen in tandem with the tolerance of the local error control/adaptive
time stepping mechanism. An important step in this direction has been given in [20].
The authors are presently exploring optimal/optimized transmission conditions at the
subdomain boundaries and a coarse grid correction [28] to handle the degradation of
the DD convergence rate for large numbers of subdomains.

Acknowledgments. This work was supported by AFOSR grant number FA9550-
07-1-0092, NSF grant number DMS-0934568, XSEDE allocation TG-DMS120004, the
High Performance Computing Center (HPCC) at Michigan State University, and
NSERC Discovery Grant 311796. The authors would also like to thank Dirk Col-
bry for insightful comments and enlightening discussions related to this work, and

16 A. Christlieb, R. Haynes, B. Ong

Benjamin Mintz for the technical help getting our programs to run on XSEDE re-
sources.

REFERENCES

[1] Xiao-Chuan Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations,
Numer. Math., 60 (1991), pp. 41–61.

[2] , Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput., 15
(1994), pp. 587–603. Iterative methods in numerical linear algebra (Copper Mountain
Resort, CO, 1992).

[3] Andrew Christlieb, Colin Macdonald, and Benjamin Ong, Parallel high-order integrators,
SIAM J. Sci. Comput., 32 (2010), pp. 818–835.

[4] Andrew Christlieb, Maureen Morton, Benjamin Ong, and Jing-Mei Qiu, Semi-implicit
integral deferred correction constructed with additive Runge–Kutta methods, Commun.
Math. Sci., 9 (2011), pp. 879–902.

[5] Andrew Christlieb and Benjamin Ong, Implicit parallel time integrators, J. Sci. Comput.,
49 (2011), pp. 167–179.

[6] Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu, Comments on high order integrators
embedded within integral deferred correction methods, Comm. Appl. Math. Comput. Sci.,
4 (2009), pp. 27–56.

[7] , Integral deferred correction methods constructed with high order Runge-Kutta integra-
tors, Math. Comput., 79 (2010), pp. 761–783.

[8] P. Colella, DT Graves, TJ Ligocki, DF Martin, D. Modiano, DB Serafini, and
B. Van Straalen, Chombo software package for amr applications-design document, 2000.

[9] Olivier Dubois, Optimized Schwarz methods for the advection-diffusion equation and for
problems with discontinuous coefficients, ProQuest LLC, Ann Arbor, MI, 2007. Thesis
(Ph.D.)–McGill University (Canada).

[10] Alok Dutt, Leslie Greengard, and Vladimir Rokhlin, Spectral deferred correction methods
for ordinary differential equations, BIT, 40 (2000), pp. 241–266.

[11] M. Emmett and M. Minion, Toward and efficient parallel in time method for partial differ-
ential equations, Journal of Computational Physics, (submitted).

[12] M.J. Gander and C. Rohde, Overlapping Schwarz waveform relaxation for convection-
dominated nonlinear conservation laws, SIAM J. Sci. Comput., 27 (2005), pp. 415–439.

[13] M.J. Gander and S. Vandewalle, On the superlinear and linear convergence of the parareal
algorithm, Lecture Notes in Computational Science and Engineering, 55 (2007), p. 291.

[14] Martin J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction
diffusion equations, Numerical Linear Algebra with Applications, 6 (1998), pp. 125–145.

[15] Martin J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699–
731 (electronic).

[16] M. J. Gander, L. Halpern, and F. Nataf, Optimized Schwarz methods, in Twelfth Interna-
tional Conference on Domain Decomposition Methods, Chiba, Japan, Tony Chan, Takashi
Kako, Hideo Kawarada, and Olivier Pironneau, eds., Bergen, 2001, Domain Decomposition
Press, pp. 15–28.

[17] M. J. Gander and A. M. Stuart, Space–time continuous analysis of waveform relaxation for
the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014–2031.

[18] Eldar Giladi and Herbert B. Keller, Space-time domain decomposition for parabolic prob-
lems, Numer. Math., 93 (2002), pp. 279–313.

[19] L. Halpern, Absorbing boundary conditions and optimized Schwarz waveform relaxation, BIT,
46 (2006), pp. S21–S34.

[20] Pavel Jiránek, Zdeněk Strakoš, and Martin Vohraĺık, A posteriori error estimates in-
cluding algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput.,
32 (2010), pp. 1567–1590.

[21] J.L. Lions, Y. Maday, and G. Turinici, A “parareal” in time discretization of PDEs, Comptes
Rendus de l’Academie des Sciences Series I Mathematics, 332 (2001), pp. 661–668.

[22] Yvon Maday and Gabriel Turinici, The parareal in time iterative solver: a further direction
to parallel implementation, in Domain decomposition methods in science and engineering,
vol. 40 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, pp. 441–448.

[23] P. Mardahl, A. Greenwood, T. Murphy, and K. Cartwright, Parallel performance char-
acteristics of ICEPIC, 2003.

[24] Alfio Quarteroni and Alberto Valli, Domain Decomposition Methods for Partial Differ-
ential Equations, Oxford Science Publications, 1999.

A PARALLEL SPACE–TIME ALGORITHM 17

[25] Carl Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Or-
dinaten, Zeit. für Math. und Phys., 46 (1901), pp. 224–243.

[26] H.A. Schwarz, Über einen grenzübergang durch alternierendes verfahren, Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272–286.

[27] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp, Domain decomposition,
Cambridge University Press, Cambridge, 1996. Parallel multilevel methods for elliptic
partial differential equations.

[28] Andrea Toselli and Olof Widlund, Domain decomposition methods—algorithms and the-
ory, vol. 34 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin,
2005.

