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Sparse Matrix Orderings
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Abstract— This report outlines ideas and algorithms used
to reduce fill in while performing Cholesky’s factorization for
a sparse symmetric positive definite matrix. Specifically, we
will discuss profile reduction algorithms, minimum degree
algorithms and nested dissection.
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I. INTRODUCTION

PARSE matrices arise frequently from finite difference
and finite element schemes. For such matrices, it is of-
ten advantageous to “utilize” the zeros by reducing storage
requirements and arithmetic operations. Consider a large,
sparse, symmetric, positive definite matrix A. The idea is
1. Interchange rows and columns of A: replace Az = b by

PAxz = Pb
PA(PTP)z = Pb
(PAPT)Pz = Pb (1)

(where P is some permutation matrix).

2. find the LLT decomposition of PAPT.

3. Let y = Pz. Then (1) becomes LLTy = Pb which we
can solve for y.

4. Solve y = Pz for z. (Note, for a permutation matrix P,
pP1=p7)

Ideally, the Cholesky factorization of PAPT results in

a matrix L which has less fill-in compared to a direct

Cholesky factorization A = LLT, while maintaining sta-

bility of the algorithm.

Before proceeding, we will first review Cholesky factoriza-
tion, followed by graph theory notions and their relation to
matrices.

II. CHOLESKY FACTORIZATION

When A € R**" is symmetric positive definite, there
exists a unique decomposition A = LLT where L is lower
triangular with positive diagonal elements. Observe: Since
A is positive definite (and symmetric), all principal minors
of A are positive. Letting o = \/a11,

=l i ]
=l 7llo S I [5 7]

where A2) = K —wwT /a;,. Notice that A®) is symmetric.
One can also show that A is positive definite. Proof: Let
z = [z1, 2]T where 2 € R*~!. Then

T Az = anz% +2012Tw+2TKz>0

Take 1 = —2Tw/a11. Then

T 2 T
ail (ﬂ> -2 (ﬂ) ZTw+2TKz>0
a1 ai1

2T(K —wwT Jay)z >0 = 2TA@2>0
Since A® is symmetric and positive definite, it can be
factored in the same way as A. The process is continued,
eventually giving us the factorization
A=ILLy--- L, LT -..LTLT
=LL" =R"R

where R is upper triangular with positive diagonal ele-
ments.

The standard algorithm for calculating Cholesky Factor-
ization is as follows:

Algorithm 1: Cholesky factorization
R=A
fork=1ton

forj=k+1ton

Rjjn = Rjjin — Ri,jinRij/ Rk
end
Ri ke:n = Rk en/ v/ Rk

end

Example 1: Consider the positive definite matrix

4 1 2 1/2 2
1 1/2 0 0 0
A= 2 0 3 0 O
1/2 0 0 5/8 0
2 0 0 0 16
Its Cholesky factor is
2
1/2  1/2 0
L= 1 -1 1 0 (2)
1/4 -1/4 -1/2 1/2 0
1 -1 -2 =31

Notice the substantial amount of fill-in (i.e. the positions
in which A has a zero entry whereas L has a nonzero entry.

It is also useful to consider the factorization of a block two
by two matrix as partitioned matrices result from nested
dissection. Consider a block two by two linear system

e Jlm -]
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where B € R*%* and C € R@—1)x(@-1)

The Cholesky factor L of A is given by

|

where Lp is the Cholesky factor of B and L¢ is the
Cholesky factor of C = C — VB~V and W = L3'V.
The symmetric block factorization scheme is given as

Lg O
WwT L¢

Algorithm 2: Symmetric Block Factorization Scheme

1. Factor matrix B into LBLE
2. Solve the triangular system LgW =V for W
3. Calculate the modified matrix C = C — WTW

4. Factor matrix C into Lo L.

It can be shown that the number of operations required to
compute the factor L of A using the step by step elimi-
nation scheme in Algorithm 1 or the symmetric block fac-
torization scheme in Algorithm 2 is identical, so there is
no real advantage in using Algorithm 2. There is how-
ever a different way to perform the block factorization that
usually decreases the storage and arithmetic operation re-
quirement. The difference is noticing that the modification
matrix can be computed in two different ways:

VILF"(LG'V) =WwTw
or as
VI(LET(LE'V) =VI(Lg"W) =VTW

If V is much sparser than W (as it often is), we save storage
and possibly arithmetic operations too. The key observa-
tion however is that we don’t actually need to store W. For
example, computing a product Wz is achieved by comput-
ing L' (Vz). We can then compute V7' W one column at
a time easing memory constraints.

Algorithm 3: Asymmetric Block Factorization Scheme

1. Factor matrix B into LBLE
2. fori=1:n
Solve Lpw = V; . for w
Solve LLw = w for w
Set CZ',: = éz',: - VTw
end
3. Factor matrix C into LoLj.

III. GRAPH THEORY NOTIONS

Graph theory is a powerful tool that can be used to an-
alyze the structure of sparse matrices, their resulting fac-
torizations and even the algorithms that produce the fac-
torizations. Some terminology and definitions are first re-
quired. Every matrix has a corresponding adjacency graph.

For example, set

r ok * * 7

*

The associated adjacency graph is shown in Figure 1.

1 3 7
8 6
9
4 10
5
2

Fig. 1. Adjacency graph #1 corresponding to matrix specified in (3).
Note that because the matrix is symmetric, the graph is undirected.
graph. For asymmetric matrices, the graphs are directed.

Let X denote the set of all nodes (vertices) {z1, 2, - ,Zn}
corresponding to the number of unknowns z in the system
Ax =b. A graph G is connected provided there exists a
path from node z to y (Vz,y € X). (Figure 1 is an example
of a connected graph). A graph G is k-connected provided
there are at least £+ 1 nodes and there is no subset S C X
of size < k — 1 which makes the graph G — S disconnected.
The subset S of size k which makes the graph G(X — —9)
disconnected is known as a separator of size k. In Figure 1,
there are several separators of size 1. Consider S = {zs},
the graph G — S is shown in Figure 2.

We leave this discussion of separators as it will be elab-
orated further when implementing nested dissection. We
instead follow the route of number theorist and assume for
the remainder of this section that graph G is k-connected
with nodes z € X. The distance d(z,y) between two nodes
z and y is the length of the shortest path joining = and y.
The eccentricity I(z) of a node z is defined to be the quan-
tity
l(z) = max{d(z,y) | y € X}

The diameter §(G) is then given by

0(G) = max{l(z) | z € X}
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1 3 7
6
9
4 10
5
2

Fig. 2. Adjacency graph #2 corresponding to the graph in Figure 1
with separator S = {zg} removed. The corresponding matrix is the
same as (3) with column 8 and row 8 removed. Note that in this
example, So = {9} and S3 = {z5} are also separators of size 1.

or equivalently
6(G) = max{d(z,y) | z,y € X}

A node z is said to be a peripheral node if its eccentricity is
equal to the diameter of the graph. In Figure 1, {z2, 23,27}
are peripheral nodes. We will use the idea of peripheral
nodes when discussing profile reduction algorithms.

Elimination graphs are also useful in matrix analysis. They
help predict the amount of fill-in during Cholesky factor-
ization, and are a basis for Minimum Degree Algorithms.

Consider the matrix specified in (3). The corresponding

graph is shown in Figure 1. Denote this as graph Go. Then

let G be the graph obtained by

1. Deleting node z; (and its incident edges).

2. Adding edges to the graph so that the nodes that were
adjacent to x; are now pairwise adjacent.

The resulting elimination graph is shown in Figure 3.

3 7
8 6
9
4 10
5
2

Fig. 3. Elimination graph G1 obtained from Gg with node z1 re-
moved. New edges are shown in green.

For the sake of further illustrating this process, suppose

that there is a specified order to eliminate the nodes, e.g.
a = {z1,z9,Z2, -+ }. Being more specific with notation,
the elimination graph G is shown in Figure 4.

3 7

Fig. 4. Elimination graph G2 obtained from G; with node zg re-
moved. New edges are shown in red.

One can then generate a sequence of these elimination
graphs

G0—>G1—)--~—)GN,1

The really amazing feature behind elimination graphs how-
ever is that they predict the amount of fill-in created by
Cholesky factorization. In particular, Figure 3 shows that
the algorithm created a new edge between z3 and xs.
This represents a fill-in during Cholesky Factorization for
L(8,3)! An example will be given discussing minimum de-
gree algorithms later.

IV. PROFILE REDUCTION ALGORITHMS

Proposed by Cuthill in 1969, band /profile reducing algo-
rithms are one of the simplest methods for solving sparse
systems. Although these orderings are far from optimal
(in the sense of reducing fill-in), they are often used in
practice because of the small computational and storage
overhead. The general idea is to reorder the matrix so that
the nonzero elements of PAPT are clustered near the main
diagonal. This property is then preserved in the Cholesky
factorization of PAPT.

The most widely used profile reduction algorithm is the
Reverse Cuthill-McKee Algorithm (RCM). The original
Cuthill-McKee method tries to order nodes locally so that
the connected nodes are ordered as close as possible.
George discovered in 1971 that by reversing the order of
the Cuthill-McKee algorithm, one normally obtain an al-
gorithm (RCM) which gives the same bandwidth, but an
improved profile.
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Algorithm 4: RCM Algorithm for a connected graph Lo

1. Determine a starting node and label as ¢ = 1.
(peripheral nodes are preferred) I
2. (Main loop) For i = 1,--- , N, find all the unnum-
bered neighbours of the node ¢ and label them in
order of increasing degree. Ly
3. Reverse the ordering of the nodes.

The effectiveness of the ordering algorithm depends criti-
cally on the choice of starting node. Although it is a simple
linear problem O(n) to calculate the eccentricity of each
node and then sort through the information to find the
peripheral nodes, the cost is usually prohibitive. (If a pe-
ripheral node is absolutely needed, Dijkstra’s algorithm is
one of the optimal methods for finding the shortest path
between two node.) A study by George and Liu show that
a pair of nodes which are near maximum distance apart are
also good ones. Here is an outline of the algorithm which
determines these pseudo-peripheral nodes, and an example
to illustrate the process.

Fig. 6. Level structure rooted at = 3. Note that there are five
levels. Since I(z) > I(r), set r = z, set z = 2 and return to step 2

Algorithm 5: Finding a pseudo-peripheral node

1. Choose an arbitrary node r in X.

2. Construct the level structure rooted at r. Let I(r)
be the number of levels.

3. Let = be the node in the last level with the
minimum degree.

4. Construct the level structure rooted at z. Let [(z)
the number of levels. If [(z) > I(r), set » = z and
return to step 3.

5. Return x as a pseudo-peripheral node.

Returning to our graph in Figure 1, suppose we wish to find
a pseudo peripheral node, and we pick an initial random
node, say r = 4. The level structure rooted at » = 4 gives

Ly

L, Fig. 7. Level structure rooted at & = 2. Since I(z) < I(r), return the

peripheral node as z = 2.

L,

V. MINIMUM DEGREE ALGORITHMS

As described earlier, elimination graphs help predict the
amount of fill-in during Cholesky factorization, and are
Fig. 5. Level structure rooted at » = 4. Note that there are four 5 bagis for minimum Degree Algorithms. For symmetric
levels. Now, take z = 3 (or z = 7) . . . . .

matrices, the standard algorithm is attributed to Tinney
(1969), which is a special case of the Markowitz scheme.
The idea is, at each step, pick a node to eliminate in which
the next elimination graph requires creating the fewest new
edges. This is normally satisfied by picking the node with
the smallest degree.
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Algorithm 6: Minimum Degree Algorithm

Set Hy = {set of all nodes}
Set a = {};
fort=0to N -1
Create the elimination graph G;
Find the node z; € H; with the minimum degree.
Store this node in (%) = .
Set Hi+1 = {Hz} — {$k}
end
The ordering « gives the minimum fill matrix.

This is best illustrated through an example. Consider the
matrix defined in Example 1. It has the adjacency graph
shown in Figure 8.

P

o)
Fig. 8. Adjacency graph corresponding to matrix in Example 1.
If there is no special ordering (ie. a = {z1, 2, 3,24, 2T5})

then the resulting elimination graph G; is shown in Fig-
ure 9.

Fig. 9.
moved.

Elimination graph G obtained from Gg with node z; re-

Because the algorithm has created new edges between
{2,3}, {2,4}, {2,5}, {3,4}, {3,5} and {4,5}, L is expected
to be completely filled in as shown in Equation (2).

If one instead implement the minimum degree algorithm,
the algorithm would first eliminate either xs, x3, x4 or x5
since they are all degree one (one edge connecting them).
Let’s set a(l) = z3. The resulting elimination graph is
shown in Figure 10. Continuing on the min degree al-
gorithm results in @ = {z9,z3,24,%5,21} where the al-
gorithm has broken “ties” arbitrarily. This means that a
natural ordering of the nodes is given by a, or equivalently,

®3

1 4
o ———o
P

Fig. 10. Elimination graph G¢ obtained with node z2 removed

change the rows of A

[0 1 0 00O 4 1 2 1/2 2
00100 1 1/2 0 0 0
PA=[0 0 0 10 2 0 3 0 0
00001 /2 0 0 5/8 0
| 1.0 0 00 2 0 0 0 16
[ 1 12 0 0 0
2 0 3 0 0
=12 0 0 5/8 0
2 0 0 0 16
4 1 2 1/2 2
Then change the columns of A.
[ 1 120 0o o07][0 0001
2 0 3 0 0 1 0000
PAPT=11/2 0 0 5/8 0 01 000
2 0 0 0 16 00100
| 4 1 212 2 |[000 10
[1/2 0 0 0O 1
0 3 0 0 2
=| 0 0 5/8 0 1/2
0 0 0 16 2
| 1 2 1/2 2 4 |
its Cholesky factor is
V2/2
V3
L= (5/8)

4
V2 2VB JBE)/2 12 /160
Notice that there is no fill-in during Cholesky factorization!

VI. NESTED DISSECTION

A nested dissection algorithm employs a divide and con-
quer idea that systematically partitions the graph associ-
ated with a matrix using separators. When a separator
is found, its vertices are labeled and removed from the
graph, leaving the graph partitioned into two or more com-
ponents. Separators are then found for each separate com-
ponent, and the procedure is continued (creating smaller
and smaller nests) until all vertices have been numbered.
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The Nested Dissection Algorithm is useful primarily for
matrix problems arising in finite difference and finite el-
ement algorithms. The reason being that separators are
easily found - Let X be the set of vertices of the n by n
regular grid. Then a one-level dissection ordering of a 10
by 10 grid is

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

[100 99 98 97 96 95 94 93 92 91|

51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77T 78 79 80
81 82 83 84 85 86 87 88 89 90

The full nested dissection ordering of a 10 by 10 grid is

78 77 19 74 73 86 54 3 56 50
76 75 80| 72 71 87 52 51 55 49
B5 84 83 82 81 |83 [0 59 538 57
68 67 [70 64 63 B89 46 {5 48 42
66 65 169 62 61 90| 44 W3 47 41
100 99 98 97 96 95 94 93 92 9
30 29 B6 22 21 [0 10 8 [12 6
28 27 35 20 19 39 9 7 1 5
B2 31 34 P4 23 38 [i6 15 14 13
26 25 33 18 17 37 3 2 H 1

Algorithm 7: Nested Dissection Algorithm

Set N as the number of nodes
Set C' as the empty set.
While N >0
(a) Find a connected component of graph
G(V-C)=G(R)
(b) Find a pseudo peripheral vertex in G(R)
(c) Generate a level structure of G(R),
LO’LI"" 7Lm
(d) If m < 2, set S = R and skip to step f
Otherwise, choose j =~ (m +1)/2
(e) Choose S C L; such that S is a
minimal separator of G(R)
(f) S is a new partition member. Set C =C U S
and label the vertices of S from N — |S|+1
to V.
(g) set N =N —|S|
end

I did not actually implement nested dissection. It was not
easy to find a separator of G(R) as matrices in general
have cyclic trees. My first attempt to find a separator
was through an exhaustive search - either incrementally
searching for all separators of size one, followed by all sep-
arators of size two, - - -, or starting with the entire set and

eliminating points to find the minimal separator. Both al-
gorithms are not computational feasible. I also found the
Ford-Fulkerson algorithm which gave the minimum separa-
tor between two arbitrary nodes. One could use this idea
to find the separator between the node in Ly and a node in
L,,. (This is quite different from algorithm 7 listed above,
but it makes the most intuitive sense). For matrices re-
sulting from finite difference schemes, it is easy to find the
separator as shown above, but I wanted a more robust al-
gorithm that would work for any matrix.

VII. RESULTS

Matlab has pre-written packages for sparse matrix ma-
nipulation. In terms of efficiency, my codes are no com-
parison to the software they have written - my RCM code
takes on the order of 1000 times longer. Listed below are
results using the built in function symrcm and nested, and
my own code rem and mindeg. (My RCM and mindeg codes
are available for your entertainment on my web site!). Fig-
ure 11 shows the advantageous of reordering for a sparse
A with no structure, and Figure 12 show reordering for
a banded matrix resulting from a laplacian operator on a
square grid.

VIII. CONCLUSION

The RCM algorithm is very fast and easy to implement.
However, it doesn’t make use of the matrix structure, and is
not optimal. Min degree algorithms attempt to minimize
fill though they don’t always succeed. These algorithms
usually win for medium sized problems. Nested dissection
works very well for very large problems - the difficulty lies
in locating a separator. Modern methods are usually hy-
brids of the nested-dissection algorithm and min degree
algorithms.
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Sparsity structure of A. Sparsity structure of L.
Oxg 0
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0 200 400 600 800 1000 800 1000 20 20
nz = 3242 nz = 17608
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200
80 80
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0 0
200 200
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Fig. 12. The number of nonzero elements (nz) is listed below



