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Abstract In this manuscript, novel methods are developed to iteratively em-
bed aggregate pieces of information from a data matrix to generate an ap-
proximate data matrix. These algorithms form a potential framework for en-
abling discovery from data while protecting the individual data elements. The
developed sub-sampled randomized algorithms converge with provable error
bounds. A heuristic accelerated scheme is also developed, motivated by the
sub-sample analysis. We compare our algorithms to current sampled algo-
rithms on a substantial test-suite of matrices and verify that the theoretical
convergence rates are numerically realized.
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1 Introduction

In a wide range of applications, data is represented by a real m×n matrix A.
An emerging concern is data privacy, where one wants to share information
about the data while withholding information about specific entries. There are
various popular approaches to share this information, most notable of which is
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differential privacy [6] which is used by Google [17] and other tech companies
that need to comply with privacy regulations, and more recently, will be used
by the US Census in 2020 [1].

In this paper, we introduce a framework for iteratively embedding aggregate
pieces of information from a data matrix to generate an approximate data
matrix. The aggregate pieces of information from the data matrix is of size
s1 × s2, and is obtained by computing the product,

UTAV ∈ Rs1×s2 . (1)

where U ∈ Rm×s1 and V ∈ Rn×s2 . The product, eq. (1) can be viewed as
weighted linear combinations of the rows and columns of the data. We will
show that we can extract useful information about the entire data matrix
using only aggregate pieces of information from the data matrix.

Algorithms that utilize eq. (1) fall into an active research area known as
randomized numerical linear algebra. Indeed, there is an extensive list of ar-
ticles citing a comprehensive review article [9], providing a wide range of ap-
plications and algorithms. The algorithms presented in this paper differ in
spirit from existing algorithms in the review article [9,2]. Existing algorithms
expend significant computational effort to compute matrices U and V so that
UT AV approximates the action of A associated with its dominant eigenspace.
This is often viewed as preconditioning the data matrix (once) so that uni-
form random sampling of the projected matrix yields an insignificant loss in
approximation accuracy. In contrast, our algorithms draw many U ’s and V ’s
from a Gaussian distribution, U ∼ N (0, 1)m×s1 and V ∼ N (0, 1)n×s2 , and
iteratively embed these aggregate pieces of information, eq. (1), to generate
an approximate data matrix.

Existing earlier uses of two sided samples eq. (1) are similarly focused on
non-iterative algorithms. Schatten p norms (pth root of the sum of the pth
power of the singular values) estimators from subsamples eq. (1) and samples
AV are compared (with cost estimates ms2 for samples AV and s1s2 for
UTAV called bilinear sketches) in [10]. Large eigenvalues are estimated using
two sided random projectors in [2]. In [3] a number of proofs use two-sided
samples to tighten bounds on low rank approximations.

The algorithms that we propose have an additional benefit. Given aggre-
gate pieces of information UT AV , our algorithms only operate on these s1×s2
pieces of aggregate information and are thus computationally efficient and tun-
able for modern hardware architectures. In §2, we highlight this computational
cost in the algorithm specifications.

Before shifting our discussion to randomized quasi-Newton algorithms (de-
rived from non-linear optimization) which motivated this current work, we
settle on some notation that will be used throughout the manuscript.
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1.1 Notation

SPD is an acronym for symmetric positive definite and W will denote SPD
weight matrices. The superscript + denotes the Moore-Penrose pseudo-inverse;
〈X,Y 〉F = Tr

[
XTY

]
and ‖X‖2F = 〈X,X〉F denote the Frobenius inner

product and norm. Residuals are measured using weighted norms. For non-
symmetric matrices, weighted norms are denoted

‖X‖2
F (W−1

1 ,W−1
2 )

= ‖W−1/2
1 XW

−1/2
2 ‖2F ,

and for symmetric matrices, weighted norms are denoted

‖X‖2F (W−1) = ‖W−1/2XW−1/2‖2F ,

with conforming SPD weights W1, W2 and W . Algorithms in this manuscript
are developed using the W -weighted projector, which projects onto the column
space of W U ,

P = PW−1,U = W U(UT W U)−1UT . (2)

The weighted projector satisfies

PW = W PT = PW PT and W−1P = PTW−1 = PT W−1 P. (3)

1.2 Randomized Quasi-Newton Algorithms

Our goal is to develop and analyze iterative approximations to A which use
sub-samples UTAV . The resulting algorithms are strongly connected to and
motivated by quasi-Newton algorithms from nonlinear optimization and sam-
pled quasi-Newton algorithms [8], which we now review.

Quasi-Newton schemes for SPD matrices A generate either a sequence of
approximations satisfying Bk → A, or a sequence of approximations satisfying
Hk → A−1, generated by applying the Sherman-Morrison-Woodbury (SMW)
formula to Bk. The schemes are formulated using constrained minimum change
criteria (for B ≈ A and H ≈ A−1) in weighted Frobenius norms [12]. Ran-
domized (sampled) update algorithms are similarly derived [8,7]. The KKT
equations for the quadratic programs,

Bk+1 = arg min
B

{
1

2
‖B −Bk‖2F (W−1) | B U = AU and B = BT

}
(4)

Hk+1 = arg min
H

{
1

2
‖H −Hk‖2F (W−1) | U = H AU and H = HT

}
(5)

give two different updates using the same sample AUk: the update to Bk
produces Bk+1, an improved approximation to A; the update to Hk produces
Hk+1, an improved approximation to A−1. The update formula that results
from solving the constrained minimum change criteria, eqs. (4) and (5), are

Bk+1 = Bk + PB(A−Bk) + (A−Bk)PTB − PB(A−Bk)PTB , (6)

Hk+1 = Hk + PH(A−1 −Hk) + (A−1 −Hk)PTH − PH(A−1 −Hk)PTH , (7)
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where the weighted projectors PB and PH defined by eq. (2) are

PB = PW−1,U = W U(UT W U)−1UT ,

PH = PW−1,AU = W AU(UT AW AU)−1UTA.

Familiar algorithms can be obtained by selecting different weights, W . Block
DFP [15] is the B formulation, eq. (4), with W = A. The corresponding update
formula is

Bk+1 = (In − PDFP) Bk(In − PTDFP) + PDFPA, (8)

where
PDFP = PA−1,U = AU(UT AU)−1UT .

Block BFGS [8,7] is the H formulation, eq. (5), (inverted using the Sherman-
Morrison-Woodbury formula) with W = A−1. The corresponding update for-
mula is

Bk+1 = Bk −BkU
(
UTBkU

)−1
UTBk +AU

(
UTAU

)−1
UT A. (9)

Although the main goal of the discussed approximation (randomized) meth-
ods for quasi-Newton methods are the construction of approximate matrix in-
verses for use as preconditioners, matrix approximation underlies the heart of
such algorithms, coupled with SMW formula. In this work, we develop a frame-
work and theory for matrix approximations using sub-sampled data. This will
lay the foundation for future exploration of approximate matrix inverses.

1.3 Outline

The manuscript is organized into two main parts. In §2, we introduce our ran-
domized sub-sampled methods. Our methods are light-weight, self-correcting
iterative updates for approximating matrices. We analyze these methods in §3,
providing convergence rates and error estimates. We then provide numerical
evidence in § 4 demonstrating the effectiveness of our methods.

The second part of our manuscript uses our sub-sampled ideas to acceler-
ate sampled algorithms heuristically. Specifically, § 5.1 develops block power
iteration accelerated sub-sampled algorithms and numerically compares them
to equivalent sampled based algorithms with similar heuristics.

2 Randomized Approximation Methods

We introduce three algorithms in this section. The first algorithm is presented
in §2.1. This algorithm is able to approximate non-square matrices, and arises
from a sub-sampled analog to the sampled algorithm in §1.2. If the input ma-
trix A is symmetric, two additional algorithms are proposed in §§2.2 and 2.3 to
maintain symmetry of the matrix approximations. The algorithms in this sec-
tion and the analysis in § 3 are formulated with general SPD weight matrices,
W , W1 and W2.
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2.1 General Sub-Sampled Update

Using an analog to eq. (4), we seek to satisfy the minimal change criterion,

Bk+1 = arg min
B

{
1

2
‖B −Bk‖2F (W−1

1 ,W−1
2 )
| UTB V = UTAV

}
. (10)

Solving eq. (10) gives rise to a self-correcting update (for details see ap-
pendix B)

Bk+1 = Bk + PW−1
1 ,Uk(A−Bk)PT

W−1
2 ,V k . (11)

By construction, eq. (11) corrects the sub-sampled mismatch UT (A− Bk)V .
It cannot increase the weighted Frobenius norm ‖A − Bk‖2F (W−1

1 ,W−1
2 )

and,

provided the sub-space sequences Uk and Vk eventually exhaust the underlying
spaces, the weighted residual must decrease monotonically to zero.

Given A ∈ Rm×n, an initial estimate B0 ∈ Rm×n, sub-sample sizes {s1, s2},
and SPD weights {W1,W2}, eq. (11) generates a sequence {Bk} that converges
to A monotonically in the appropriate weighted Frobenius norm. The resulting
algorithm is summarized in algorithm 1: boxed values show the number of
samples of A on a pseudocode line; the return-line double boxed value is the
total number of samples.

Require: B0 ∈ Rm×n, SPD W1 ∈ Rm×m, W2 ∈ Rn×n, {s1, s2} ∈ N.
1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)m×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual Λk = UTk AVk − UTk BkVk ∈ Rs1×s2 . . . . . . . . . . s1s2

4: Update Bk+1 = Bk +W1Uk(UTk W1Uk)−1Λk(V Tk W2Vk)−1V Tk W2

5: until convergence

6: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1) (s1s2)

Algorithm 1: NS: Non-Symmetric Sub-Sampled Approximation

Algorithm 1, does not generate symmetric approximations for symmetric
A. The next two sections modify the basic algorithm to preserve symmetry.
When discussing symmetric updates we will always use symmetric initializa-
tions B0 = BT0 and symmetric weights W = W1 = W2.

2.2 Symmetric Update

Symmetric sampling, Vk = Uk, and weighting W = W1 = W2 in algorithm 1
with symmetric initialization B0 = BT0 gives a sequence of symmetric ap-
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proximations, Bk, to a symmetric n× n matrix A. The resulting algorithm is
summarized in algorithm 2 with sample counts boxed as before.

Require: B0 ∈ Rn×n satisfying BT0 = B0, SPD W ∈ Rn×n, s1 ∈ N.
1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N (0, 1)n×s1

3: Compute residual Λk = UTk AUk − UTk BkUk ∈ Rs1×s1 . . . . . . . . . . . . s21

4: Compute P̃k = W Uk(UTk W Uk)−1

5: Update Bk+1 = Bk + P̃kΛkP̃
T
k

6: until convergence

7: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1)
(
s21
)

Algorithm 2: SS1: Symmetric Sub-Sampled Approximation

Remark 1 Algorithm 2 (with W = In) can be viewed as a sub-sampled BFGS
update: apply the orthogonal projection PIn,U = UUT to both sides of eq. (9)
to get algorithm 2 with W = In. Algorithm 2 can be viewed as a sub-sampled
DFP update.

Remark 2 Algorithm 2 does not preserve positivity. A non-SPD result can be
observed when

A =

[
1 0
0 1

]
, B =

[
1 0
0 9

]
, and U =

1√
2

[
1
1

]
.

2.3 Multi-Step Symmetric Updates

An alternative approach to generate symmetric approximations is to sym-
metrize eq. (11) as follows

Bk+1/2 = Bk + PW−1,Uk(A−Bk)PTW−1,V k

Bk+1 =
1

2

(
Bk+1/2 +BTk+1/2

)
.

(12)

For symmetric A and B0, it can be shown that the convergence rate for eq. (12)
is comparable to Algorithm 2. However, for symmetricA the additional sample,

PW−1
2 ,V kAP

T
W−1

1 ,Uk =
(
PW−1

1 ,UkAP
T
W−1

2 ,V k

)T
,

can be directly incorporated to give

Bk+1/3 = Bk + PW−1
1 ,Uk(A−Bk)PT

W−1
2 ,V k

Bk+2/3 = Bk+1/3 + PW−1
2 ,V k(A−BTk+1/3)PT

W−1
1 ,Uk

Bk+1 =
1

2

(
Bk+2/3 +BTk+2/3

)
,

(13)
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where the last line again enforces symmetry. We summarize this two-step sym-
metric algorithm in algorithm 3 with sample counts boxed as before. This
two-step algorithm has superior convergence properties.

Require: B0 ∈ Rn×n satisfying B0 = BT0 , SPD W ∈ Rm×m, {s1, s2} ∈ N.
1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)n×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual Λk = UTk AVk − UTk BkVk ∈ Rs1×s2 . . . . . . . . . . s1s2

4: Compute Bk+1/3 = Bk +W Uk(UTk W Uk)−1Λk(V Tk W Vk)−1V Tk W
5: Compute residual Λk+1/3 = (UTk AVk)T − V Tk Bk+1/3Uk ∈ Rs2×s1
6: Compute

Bk+2/3 = Bk+1/3 +W Vk(V Tk W Vk)−1Λk+1/3(UTk W Uk)−1UTk W

7: Update Bk+1 = 1
2 (Bk+2/3 +BTk+2/3)

8: until convergence

9: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1) (s1s2)

Algorithm 3: SS2: Two-Step Symmetric Sub-Sampled Approximation

3 Convergence Analysis

Our convergence results rely extensively on properties of randomly generated
projectors. In our computational tests, projections are generated by orthogo-
nalizing matrices with individual entries drawn from N(0, 1). For square ma-
trices, this process gives rotations drawn from a distribution which is invariant
under rotations [16]. Our algorithms use symmetric weighted rank s projectors,

ẑ = W 1/2U(UTWU)−1UTW 1/2, (14)

where W is an SPD weight matrix and U is simply the first s columns of such
a random rotation. The expectation of random symmetric n × n projections
ẑ, E[ẑ] ∈ Rn×n, is crucial in our analysis. We write zi for the eigenvalues of
E[ẑ] with the standard ordering z1 ≤ z2 ≤ · · · ≤ zn. The extreme eigenvalues
z1 and zn determine our algorithms convergence with the best results when
z1 = zn.

For clarity the next section collects a number of useful definitions and
lemmas.

3.1 Mathematical Preliminaries

Definition 1 A random matrix X̂ ∈ Rm×n is rotationally invariant if the
distribution of Qm X̂ Qn is the same for all rotations Qi ∈ O(i).

Lemma 1 (Random Projections) For any distribution ẑ of real, symmet-
ric rank s projectors in Rn,

0 ≤ λmin(E[ẑ]) ≤ s

n
≤ λmax(E[ẑ]) ≤ 1. (15)

Further, if ẑ is rotationally invariant, then E[ẑ] = s
nIn.
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Proof Let x ∈ Rn with xTx = 1. Since ẑ is a projector,

0 = λmin(ẑ) ≤ xT ẑ x ≤ λmax(ẑ) = 1.

Since E[xT ẑ x] = xTE[ẑ]x, taking the expectation gives

0 ≤ xTE[ẑ]x ≤ 1,

for all unit vectors x. Since the trace is linear, the sum of the eigenvalues
of E[ẑ] equals Tr(E[ẑ]) = E[Tr(ẑ)] = E(s) = s, which establishes eq. (15).
Rotationally invariant ẑ satisfy E[ẑ] = αIn since for all Q1, Q2 ∈ O(n),

E[ẑ] = E[Q1 ẑ Q2] = Q1 E[ẑ]Q2,

Using a similar argument, linearity of the trace gives α = s
n .

Lemma 2 (Projection Cancellation) For R ∈ Rm×n and conforming
symmetric projections ŷ, ẑ,

〈R ẑ,R ẑ〉F = 〈R,R ẑ〉F (16)

〈ŷ R ẑ, ŷ R ẑ〉F = 〈ŷ R ẑ, R ẑ〉F = 〈ŷ R ẑ, R〉F (17)

Proof Expanding the definition of eq. (16),

〈Rẑ,Rẑ〉F = Tr[ẑTRTR ẑ] = Tr[RTR ẑ ẑT ] = Tr[RTR ẑ] = 〈R,R ẑ〉F ,
since Tr[AB] = Tr[BA] and ẑ is a projector. Similarly for eq. (17),

〈ŷ R ẑ, ŷ R ẑ〉F = Tr[ẑTRT ŷT ŷ R ẑ] = Tr[ẑTRT ŷTR ẑ] = 〈ŷ R ẑ, R ẑ〉F ,
〈ŷ R ẑ, R ẑ〉F = Tr[ẑTRT ŷTR ẑ] = Tr[ẑ ẑTRT ŷTR] = Tr[ẑTRT ŷTR] = 〈ŷ R ẑ, R〉F .

Lemma 3 (Spectral Bounds) For any R ∈ Rm×n and conforming sym-
metric positive semi-definite matrices S1, S2, and (in the special case m = n
) S we have the bounds:

λmin(S1)〈R,R〉F ≤ 〈S1R,R〉F ≤ λmax(S1)〈R,R〉F , (18)

λmin(S2)〈R,R〉F ≤ 〈R,RS2〉F ≤ λmax(S2)〈R,R〉F , (19)

λmin(S)2〈R,R〉F ≤ 〈S R,RS〉F ≤ λmax(S)2〈R,R〉F . (20)

Proof To establish eq. (18) write R = [r1|r2| · · · |rn] and note that the results
follows immediately from 〈S1R,R〉F =

∑n
i=1 r

T
i S1ri and 〈R,R〉F =

∑n
i=1 r

T
i ri

since
n∑
i=1

λmin(S1) rTi ri ≤
n∑
i=1

rTi S1ri ≤
n∑
i=1

λmax(S1) rTi ri. (21)

Equation (19) follows directly from eq. (18) applied to S2 and RT since

〈R,RS2〉F = 〈RT , ST2 RT 〉F = 〈ST2 RT , RT 〉F = 〈S2R
T , RT 〉F .

To establish eq. (20) note that for symmetric positive semi-definite T

〈T 2R,RT 2〉F = 〈T R, T 2 T R〉F and 〈T R, T R〉F =

n∑
i=1

rTi T
2ri.

Equation (20) then follows immediately with T = S1/2 from eq. (18) applied
to S1 = T 2 and the standard bound eq. (21) with S1 = T 2.
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3.2 Convergence Theorems

Convergence results for algorithms 1 to 3. are for E[‖B − A‖2F ]. Such results
dominate similar results for ‖E[B −A]‖2F since

‖E [B −A]‖2F = E
[
‖B −A‖2F

]
−E

[
‖B −E [B]‖2F

]
,

as shown in [8].

Theorem 1 (Convergence of NS algorithm 1) Let A ∈ Rm×n and W1 ∈
Rm×m and W2 ∈ Rn×n be fixed SPD weight matrices. If Uk ∈ Rm×s1 and
Vk ∈ Rn×s2 are random, independently selected matrices with full column rank
(with probability one), then eq. (11) generates a sequence, Bk, from an initial
guess B0 ∈ Rm×n satisfying

E
[
‖Bk+1 −A‖2F (W−1

1 ,W−1
2 )

]
≤ (ρNS)kE

[
‖B0 −A‖2F (W−1

1 ,W−1
2 )

]
,

where ρNS = 1− λmin(E[ŷ])λmin(E[ẑ]), with

ŷk = W
1/2
1 Uk(UTk W1Uk)−1UTk W

1/2
1 , ẑk = W

1/2
2 Vk(V Tk W2Vk)−1V Tk W

1/2
2 .

(22)

Proof Define the kth residual as Rk := W
−1/2
1 (Bk − A)W

−1/2
2 . With some

algebraic manipulation, eq. (11) can be re-written as

Rk+1 = Rk − ŷkRkẑk. (23)

Computing the squared Frobenius norm of eq. (23),

〈Rk+1, Rk+1〉F = 〈Rk − ŷkRkẑk, Rk − ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈Rk, ŷkRkẑk〉F − 〈ŷkRkẑk, Rk〉F + 〈ŷkRkẑk, ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈ŷkRkẑk, Rkẑk〉F ,

where we have made use of lemma 2. Taking the expected value with respect
to independent samples Uk (leaving Vk and Rk fixed) gives

E
[
‖Rk+1‖2F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rkẑk, Rkẑk〉F
≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, Rkẑk〉F ,

(24)

where we applied lemma 3 to the symmetric positive semi-definite matrix
E[ŷk], and utilized eq. (16). Taking the expected value with respect to inde-
pendent samples Vk and leaving Rk fixed gives

E[‖Rk+1‖2F | Rk] ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, RkE[ẑk]〉F
≤ 〈Rk, Rk〉F − λmin(E[ŷk])λmin(E[ẑk])〈Rk, Rk〉F .
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Taking the full expectation gives

E[‖Rk+1‖2F ] ≤ E [〈Rk, Rk〉F ]− λmin(E[ŷk])λmin(E[ẑk])E [〈Rk, Rk〉F ]

= (1− λmin(E[ŷk])λmin(E[ẑk]))E[〈Rk, Rk〉F ].

Since

E[‖Rk+1‖2F ] = E[‖Bk −A‖2F (W−1
1 ,W−1

2 )
,

un-rolling the recurrence for k iterations yields the desired result.

Remark 3 The condition that Uk and Vk are chosen independently of each
other is required to justify E[〈ŷkRkẑk, Rkẑk〉F ] = 〈E[ŷk]Rkẑk, Rkẑk〉F .

Theorem 2 (Convergence of SS1 algorithm 2) Let A,W ∈ Rn×n be
fixed SPD matrices and Uk ∈ Rn×s be a randomly selected matrix having full
column rank with probability 1. If B0 ∈ Rn×n is an initial guess for A with
B0 = BT0 , then after applying k iterations of the update in algorithm 2, the
iterates Bk+1 satisfy

E[‖Bk+1 −A‖2F (W−1)] ≤ (ρSS1)kE[‖B0 −A‖2F (W−1)], (25)

where ρSS1 = 1− λmin(E[ẑ])2 and

ẑk = W 1/2Uk(UTk W Uk)−1UTk W
1/2.

Proof Following similar steps outlined in the proof in theorem 1, we arrive at

〈Rk+1, Rk+1〉F = 〈Rk, Rk〉F − 〈Rk, ẑkRkẑk〉F .

Taking the expected value with respect to Uk leaving Rk fixed we have

E
[
‖Rk+1‖2F | Rk

]
= 〈Rk, Rk〉F −E [〈Rk, ẑkRkẑk〉F ]

= 〈Rk, Rk〉F −E
[
Tr[RTk ẑkRkẑk]

]
= 〈Rk, Rk〉F − Tr [E [RkẑkRkẑk]]

≤ 〈Rk, Rk〉F − Tr
[
E [Rkẑk]

2
]
,

where the inequality arises from application of Jensen’s Inequality. Simplifying
and applying eq. (20),

E[‖Rk+1‖2F (W−1) | Rk] ≤ 〈Rk, Rk〉F − Tr
[
E [Rkẑk]

2
]

= 〈Rk, Rk〉F − Tr [RkE [ẑk]RkE [ẑk]]

= 〈Rk, Rk〉F − 〈E[ẑk]Rk, RkE[ẑk]〉F
≤ 〈Rk, Rk〉F − λmin(E[ẑk])2〈Rk, Rk〉F .

Taking the full expectation and un-rolling the recurrence yields the desired
result.
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Theorem 3 (Convergence of SS2 algorithm 3) Let A,Uk, Vk and B0 be
defined as in theorem 1, and let W be a fixed SPD matrix. After applying k
iterations of algorithm 3 with W = W1 = W2, the iterates Bk satisfy

E
[
‖Bk −A‖2F (W−1)

]
≤ (ρSS2)kE

[
‖B0 −A‖2F (W−1)

]
,

where

ρSS2 = 1− 2λmin(E[ŷ])λmin(E[ẑ]) + λmin(E[ŷ])2λmin(E[ẑ])2.

Proof Define kth residual Rk and projectors ŷk and ẑk as in theorem 1 with
W = W1 = W2. The iteration given in eq. (13) can be re-written in terms of
Rk as follows.

Rk+1/3 = Rk − ŷkRkẑk
RTk+2/3 = RTk+1/3 − ẑkR

T
k+1/3ŷk

Rk+1 =
1

2

(
Rk+2/3 +RTk+2/3

)
Theorem 1 gives

E
[∥∥Rk+1/3

∥∥2
F

]
≤ (ρNS)E

[
‖Rk‖2F

]
,

and a repeated application of theorem 1 gives

E
[∥∥Rk+2/3

∥∥2
F

]
≤ (ρNS)E

[
‖Rk+1/3‖2F

]
≤ (ρNS)2E

[
‖Rk‖2F

]
.

Lastly, we observe via the triangle inequality that

E
[
‖Rk+1‖2F

]
= E

[∥∥∥∥1

2

(
Rk+2/3 +RTk+2/3

)∥∥∥∥2
F

]

≤ 1

2
E
[∥∥Rk+2/3

∥∥2
F

]
+

1

2
E

[∥∥∥RTk+2/3

∥∥∥2
F

]
= (ρNS)2E

[
‖Rk‖2F

]
,

Un-rolling the loop for k iterations gives the desired result.

3.3 Optimal Fixed Weight Convergence Rates

To discuss convergence rates, we define

ρNS(y1, z1) = 1− y1z1,
ρSS1(z1) = 1− z21 ,

ρSS2(y1, z1) = (1− y1z1)2,

(26)
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and note that the convergence rates for algorithms 1 to 3 can be expressed as

‖Rk+1‖2F (W−1
1 ,W−1

2 )
≤ ρ‖Rk‖2F (W−1

1 ,W−1
2 )

(27)

with the appropriate ρ, eq. (26), evaluated at y1 = λmin(E[ŷ]) and z1 =
λmin(E[ẑ]). Since any symmetric rank s random projection ẑ on Rn satisfies
0 ≤ z1 ≤ s

n ≤ zn ≤ 1 and rotationally invariant distributions, e.g. UU+ with
U ∼ N(0, 1)n×s, further satisfy E[ẑ] = s

n , minimizing the various convergence
rates ρ over the appropriate domains gives the following optimal rates.

Corollary 1 (Optimal Convergence Rate) The optimal convergence rates for
algorithms 1 to 3 are obtained attained for Uk and Vk sampled from rotationally
invariant distributions,

ρoptNS = 1− s1
m

s2
n
,

ρoptSS1 = 1−
(s2
n

)2
,

ρoptSS2 =
(

1− s1
m

s2
n

)2
.

(28)

Proof Each part is simply the result of an explicit optimization,

ρoptNS = min
0≤y≤s1/m
0≤z≤s2/n

(1− yz) = 1−
(s1
m

)(s2
n

)
ρoptSS1 = min

0≤z≤s2/n
(1− z2) = 1−

(s2
n

)2
ρoptSS2 = min

0≤y≤s1/m
0≤z≤s2/n

(1− yz)2 =
(

1− s1
m

s2
n

)2
Remark 4 Theorems 1 to 3 all assume the weight matrix W and distributions
are fixed. All our non-accelerated numerical experiments use fixed weights and
sample from fixed rotationally invariant distributions.

Remark 5 Corollary 1 is an extremely strong result. Consider for simplicity

s1 = s2 = s. Although the convergence rates are roughly 1 −
(
s
n

)2
, only

s × s aggregated pieces of information are used each iteration. If a sampled
algorithm uses s× n pieces of information, e.g. [8], our algorithm can take n

s
iterations with the same amount of information/work. Consequently the error
decrease after n

s satisfies(
1− s2

n2

)n/s
≈ 1− n

s
· s

2

n2
,

which is comparable to the convergence rates of sampled quasi-Newton meth-
ods.
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3.4 Theoretical Lower Bound for Convergence Rates

Lower bounds (entirely analogous to the upper bounds in theorems 1 to 3
but using the upper bounds in lemma 3) are easily derived. For example, the
two-sided error bound for algorithm 1 is

ρNS(ym, zn)E[‖Rk‖2F ] ≤ E[‖Rk+1‖2F ] ≤ ρNS(y1, z1)E[‖Rk‖2F ],

where as before y1 ≤ y2 ≤ · · · ≤ ym is the spectrum of E[ŷ], z1 ≤ z2 ≤ · · · ≤ zn
is the spectrum of E[ẑ] and the explicit form for ρNS is in eq. (26). We collect
the similar results for algorithms 1 to 3 in corollary 2.

Corollary 2 (Two-Sided Convergence Rates) Given the assumptions of
theorems 1 to 3 the explicit formulas eq. (26) for ρ give two-sided bounds,

ρNS(ym, zn)k ≤
E
[
‖Bk+1 −A‖2F (W−1

1 ,W−1
2 )

]
‖B0 −A‖2F (W−1

1 ,W−1
2 )

≤ ρNS(y1, z1)k

ρSS1(zn)k ≤
E
[
‖Bk+1 −A‖2F (W−1)

]
‖B0 −A‖2F (W−1)

≤ ρSS1(z1)k

ρSS2(yn, zn)k ≤
E
[
‖Bk+1 −A‖2F (W−1)

]
‖B0 −A‖2F (W−1)

≤ ρSS2(y1, z1)k

where y1, ym, z1, zn are the extreme eigenvalues of E[ŷ] and E[ẑ].

Proof We prove the NS result; the proofs for SS1 and SS2 are analogous.
Equation (24) of theorem 1 and lemma 3 gives

E
[
‖Rk+1‖2F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≥ 〈Rk, Rk〉F − λmax(E[ŷk]) 〈Rk, Rkẑk〉F .

Following theorem 1 (expectation in Vk and repeating the inequality) gives

E[‖Rk+1‖2F | Rk] ≥ 〈Rk, Rk〉F − λmax(E[ŷk]) 〈Rk, RkE[ẑk]〉F
≥ 〈Rk, Rk〉F − λmax(E[ŷk])λmax(E[ẑk]) 〈Rk, Rk〉F .

Then taking the full expectation gives the inequality

E[‖Rk+1‖2F ] ≥ E [〈Rk, Rk〉F ]− λmax(E[ŷk])λmax(E[ẑk]) E [〈Rk, Rk〉F ]

= (1− λmax(E[ŷk])λmax(E[ẑk])) E[〈Rk, Rk〉F ].

Combine this with theorem 1 and unroll the iteration to obtain the NS result.

Remark 6 If ŷ and ẑ are rotationally invariant, the upper and lower proba-
bilistic bounds in corollary 2 coincide since z1 = zn = s1

n and y1 = ym = s2
m .

Algorithms 1 to 3 all use rotationally invariant distributions and converge
predictably at the expected rate. The algorithms still converge with other
distributions provided the smallest eigenvalue of the expectation is positive.
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4 Numerical Results

Our sub-sampled algorithms algorithms 1 to 3 are tested on a variety of SPD
matrices: A = XXT , X ∼ N (0, 1)n×n; ridge regression matrices chosen from
[4]; and matrices chosen from the Sparse Suite Library [5]. Algorithms 1 to 3
were implemented within the MATLAB code framework in [8] and we test
on the same problems from [4,5]. All computational tests were performed on
Superior, a high-performance computing infrastructure at Michigan Techno-
logical University.

We assume ‘black-box’ matrix access which efficiently computes products
AV , UTA and/or UTAV for UT ∈ Rs1×m and V ∈ Rn×s2 at a cost propor-
tional to the number of output entries. Such a scenario will arise for example,
if the owner of the data seeks to enable discovery from the data, and is will-
ing to operate on the data to release aggregate pieces of information about
the data. Hence, the size of the aggregated pieces of information will be the
primary cost metric for our algorithms.

Although the algorithms in § 2 were formulated with general SPD weight
matrices, W , W1 and W2, the numerical experiments utilize W = I so that a
fair comparison can be made with sampled algorithms [8].

The experiments are organized as follows: § 4.1 compares our algorithms
with s = s1 = s2 = d

√
ne (the sample size used in [8]) on one moderate sized

n ≈ 5000 matrix from each of the three classes tested in [8]; §4.2 demonstrates
the independence of the convergence on the sample size s � n for the same
three matrices; the convergence of our algorithms on the remaining matrices
from [8] are available as a supplementary document.

4.1 Convergence Test

The convergence,

‖A−Bk‖F
‖A‖F

,

of sampled algorithms [8] with sample size s = d
√
ne are compared to our

sub-sampled algorithms with s1 = s2 = s on three matrices: (n = 5000) XXT

with X ∼ N (0, 1)n×n § 4.1; (n = 5000) Gisette-Scale [4] § 4.1; and (n = 4704)
NASA [5] § 4.1. These figures show: BFGS(�) as specified by eq. (9); DFP (�)
as specified by eq. (8); NS (⊗) as specified by Algorithm 1; SS1 (•) as specified
by Algorithm 2; SS2 (�) as specified by Algorithm 3. Theoretical convergence
rates from eq. (28) are shown in dotted lines. Runs were terminated after 5n2

iterations or when the relative residual norm fell below 10−2. Algorithms 1
to 3 converge predictably: linear in the semilog plots matching the theoretical
convergence rates (dotted lines). DFP and BFGS have target dependent weight
matrices which may initially improve convergence. For the Gisette-Scale matrix
§4.1 DFP and BFGS show dramatic improvement. However, §4.1 and various
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examples from [8] in the supplementary materials show that BFGS can fail to
converge.

Since we sample Uk and Vk from rotationally invariant distributions, all our
experiments show the predictable optimal convergence rates from eq. (28) (dot-
ted lines). With these choices the expected convergence rate of both NS and

SS1 is 1−
(
s
n

)2
while the expected convergence rate of SS2 is

(
1−

(
s
n

)2)2
=

1− 2(s/n)2 + (s/n)4.

0 0.5 1 1.5 2 2.5

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
‖ F

Convergence Test - Random

BFGS

DFP

NS

SS1

SS2

Fig. 1 (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n with s = 71 = d
√

5000e.
Dotted lines indicate sub-sampled theoretical convergence rates.

4.2 Sample Size Tests

Equation (28) gives the expected convergence rate, ρ, of the various algorithms
as a function of the ratio of sample size s and matrix dimension n. Consider
two experiments running SS1 with rotationally invariant sampling on the same
A ∈ Rn×n with sample size s and 2s: the first experiment involves s2 matrix
samples at each step, and one expects the residual to be reduced by a factor of

1−
(
s
n

)2
after each step; the second experiment involves (2s)2 matrix samples

each step, and one expects the residual to be reduced by a factor of of 1−
(
2s
n

)2
after each step. Since our primary cost metric for our algorithms is the number
of matrix samples, four steps of size s2 is the same amount of work as one
step of size (2s)2. Taking four steps of size s2 gives approximately the same
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Fig. 2 (n = 5000) Approximation of Hessian from Gisette Scale [4] with s = 71 =
d
√

5000e. Dotted lines are theoretical convergence rates. DFP and BFGS perform well.
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Fig. 3 (n = 4700) Approximation of NASA4704 from [5]. s = 69 = d
√

4704e. Dotted
lines indicate sub-sampled theoretical convergence rates. BFGS does not converge.
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reduction as one step of size (2s)2 since(
1−

( s
n

)2)4

=

(
1−

(
2s

n

)2
)1

+O

(( s
n

)4)
.

All formulas in eq. (28) have the same scaling behavior and as a result the
expected convergence of all the sub-sampled algorithms should be essentially
independent of s for 1� s� n. In practice, we would advocate choosing s to
suit the available computational hardware.

This behavior is verified for the sub-sampled algorithms algorithms 1 to 3
on the three test problems from § 4.1. In table 1, we report the total com-
putational effort for each matrix, normalized by the corresponding number of
matrix samples for s = 512. All of the entries are very close to one, indicating
that the computational effort is independent of s.

Matrix s NS SS1 SS2
128 0.997 0.992 0.999

Rand 256 0.996 0.996 1.004
512 1.000 1.000 1.000
128 0.996 0.990 0.995

Gisette Scale 256 0.996 0.993 0.998
512 1.000 1.000 1.000
128 0.996 0.998 0.994

NASA4704 256 0.996 1.002 0.998
512 1.000 1.000 1.000

Table 1 Computational effort relative to s = 512 for s = 512, 256, 128 for: Rand XXT

(n = 5000), with X ∼ N (0, 1)n×n; Gisette Scale (n = 5000) Hessian [4]; and NASA4704
(n = 4704) [5].

Remark 7 Before moving on to some heuristic accelerated schemes, it is per-
haps helpful to place our work in context of other randomized quasi-Newton-
like methods that use “sub-samples” in some fashion. Consider an optimization
problem involving objective functions of the form

f(x) =

N∑
k=1

fk(x), x ∈ RD (29)

A class of methods known as sub-sampled Newton methods [14,13] approxi-
mate Hessians computed from derivatives of eq. (29) by sampling the input
vector x, and sampling components of the objective function, i.e.,

H ≈ ∇2
s1∑
k=1

fσ(k)(V x),

where σk : ZN → ZN and V ∈ Rn×n has s non-zero columns. This is rightly
termed as sub-sampled method in the sense that the input vector is sam-
pled, and the objective function is also sampled. In some sense, both our
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proposed methods and these sub-sampled Newton methods sample the input
space. What differs is that our methods sample the output space, whereas
sub-sampled Newton methods sample the objective function, two entirely dif-
ferent objects. Our proposed methods iterate on s1× s2 pieces of information,
while the sub-sampled Newton methods essentially operate on s1×n pieces of
information.

5 Heuristic Accelerated Schemes

Motivated by the sub-sampled analysis, we develop a heuristic accelerated
scheme in § 5.1. Numerical convergence and acceleration is verified in § 5.2.
Lastly, we make some observations about how our heuristic scheme is related
to other accelerated sampled algorithms in §5.3, and block Krylov iteration in
§ 5.4.

5.1 Eigenvector Acceleration

The update underlying algorithm 2 samples and then corrects the sample mis-
match in the residual Rk = A − Bk. Larger corrections (and consequently
more significant improvements in the approximation Bk+1) occur if UTRkU
is large. Block-power iteration on Rk is a simple heuristic to enhance sub-
spaces associated with the larger eigenvalues of Rk. Algorithm 4 summarizes
an extension to algorithm 2 by incorporating a fixed number, p, of inner block-
power iterations. As before, work estimates are boxed on the right (p steps of
a block power iteration involving p n s matrix samples and a square symmetric
sample involving s2 matrix samples) at each step with the total double boxed
on the result line. This is not a sub-sampled algorithm (each internal power
iteration involves a sample) and involves significantly more matrix samples
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per iteration. Despite this algorithm 4 is competitive for small values of p.

Require: B0 ∈ Rn×n satisfying BT0 = B0, SPD W ∈ Rn×n, s ∈ N.
1: repeat {k = 0, 1, . . .}
2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk
4: loop {i = 1, 2, . . . , p}
5: Λ = AUi−1,k −Bi−1,kUi−1,k

6: Σ = Λ(UTi−1,kWUi−1,k)−1UTi−1,kW

7: Bi,k = Bi−1,k +Σ +ΣT −WUi−1,k(UTi−1,kWUi−1,k)−1UTi−1,kΣ
8: Ui,k = Λ
9: end loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p n s

10: Compute residual Λk = UTp,kAUp,k − UTp,kBp,kUm,k ∈ Rs×s . . . . . . . s2

11: Compute P̃k = W Up,k(UTp,kW Up,k)−1

12: Update Bk+1 = Bk + P̃kΛkP̃
T
k

13: until convergence

14: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1)(p n s+ s2)

Algorithm 4: SS1A: Accelerated Symmetric Approximation

Remark 8 Implementing similar acceleration for algorithm 3 would target the
input/output spaces of the interior non-symmetric updates. Since, Rk is sym-
metric little acceleration is realized unless the input and output spaces match
as in algorithm 4.

5.2 Acceleration Convergence Results

We now compare the performance of SS1A algorithm 4 (with rotationally in-
variant sampling and p = 2) to various algorithms: S1, BFGS, DFP, and a
re-interpretation of the heuristic accelerated BFGS algorithm from [8] which
we term BFGSA. Specifically, BFGSA is obtained by applying the Sherman-
Morrison-Woodbury formula to the the adaptively sampled algorithm AdaRBFGS
in [8], which approximates A−1. The sampled algorithm, S1, is the B formu-
lation in eq. (6) with rotationally invariant weight W = In.

The convergence (relative Frobenius residual ‖A − Bk‖F /‖A‖F against
matrix samples) of accelerated algorithms with sample size s = d

√
ne from

[8] are compared to our accelerated algorithm with s1 = s2 = s on the three
matrices from § 4: (n = 5000) XXT with X ∼ N (0, 1)n×n § 5.2; (n = 5000)
Gisette-Scale [4] § 5.2; and (n = 4704) NASA [5] § 5.2. These figures show:
BFGSA (∗) as specified by eq. (9) with adaptive sampling described in [8]; S1
(◦) as specified by eq. (6); SS1A (D) as specified by Algorithm 4; BFGS (�)
as specified by eq. (9); DFP (�) as specified by eq. (8). Runs were terminated
after 5n2 iterations or when the relative residual norm fell below 10−2. The
results show SS1A matching or outperforming the other algorithms for the
three matrices from §4.1. Further accelerated experiments are discussed in the
supplementary documents.
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Fig. 4 (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n with s = 71
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Fig. 5 (n = 5000) Approximation of Hessian from Gisette Scale [4] s = 71.

5.3 Relationship to Algorithms in [9]

We revisit the algorithms that fall in the general framework described in [9].
Recall that such algorithms construct a single (expensive) sub-sample, Q∗AQ,
to approximate the action of A associated with its dominant eigenspace. This
matrix Q can be computed using a modified block power method, as described
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Fig. 6 (n = 4700) Approximation of NASA4704 from [5] s = 69.

in algorithm 5. Further, recall that for SPD A, the sub-sampled data is em-

1: Sample U ∼ N (0, 1)n×s

2: Compute Y0 = AU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n s
3: Compute QR-decomposition Y0 = Q0R0

4: loop {i = 1, 2, . . . , p}
5: Compute Ỹi = A∗Qi−1

6: Compute QR-decomposition Ỹi = Q̃i R̃i

7: Compute Yi = AQ̃i

8: Compute QR-decomposition Yi = QiRi

9: end loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 p n s

10: return Qp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 p+ 1)(n s)

Algorithm 5: From [9]: Randomized Subspace Iteration (Stage A)

bedded using the low-rank approximation PIn,QAPTIn,Q. Hence, algorithm 5
can be viewed as a single outer loop of algorithm 4 with the modification that
intermediate data Λ = AUi−1,k −Bi−1,kUi−1,k is not used.

5.4 Krylov Spaces

Block Krylov Iteration [11] computes a low-rank approximation by searching
the Krylov space

Vp(U0,k) = span{AU0,k, (AA
T )AU0,k, . . . , (AA

T )p−1AU0,k}
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of A. The block Krylov iteration algorithm is summarized in algorithm 6.

1: Sample U ∼ N (0, 1)n×s

2: Compute K =
[
AU0,k|(AAT )AU0,k| . . . |(AAT )p−1AU0,k

]
m×ps

3: Compute QR-decomposition K = QR

4: return Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 p− 1)(n s)

Algorithm 6: [11]: Block Krylov Iteration (Stage A)

Algorithm 4 can also be viewed as a modified block Krylov method. Each
inner iteration builds approximations in the space

span{U0,k, (A−B0,k)U0,k, (A−B1,k)(A−B0,k)U0,k, . . . ,

(
p−1∏
i=0

(A−Bi,k)

)
U0,k},

which approximates the Krylov space Vp(U0,k) of the residual A−B. In Algo-
rithm 4 each intermediate space Ui−1,k ≈ (A − B)iU0,k is only stored during
one inner iteration and the Krylov matrix K is never formed.

6 Conclusions and Future Work

In this manuscript, novel methods which we refer to as sub-sampled methods,
are developed to iteratively embed aggregate pieces of information from a data
matrix to generate an approximate data matrix. These methods are useful if
the data matrix is unavailable (e.g., due to privacy concerns), but weighted
linear combinations of the rows and columns of the data are available. These
methods have a significantly smaller data-footprint than sampled algorithms
and the footprint can be tuned by selecting sample sizes s1 and s2. The it-
erative methods are self-correcting with computable convergence rates under
reasonable assumptions since they systematically reduce a weighted Frobe-
nius norm of the residual A−Bk. The analysis demonstrates that rotationally
symmetric sampling is desirable, and tight convergence rates can be derived
for the algorithms. Experimentally the sub-sampled algorithms (algorithms 1
to 3) match their convergence rates and have rates comparable to those of
sampled algorithms in the literature.

An accelerated hybrid method (algorithm 4) is developed by combining
simultaneous iteration (to enrich a subspace) with the sub-sampled update al-
gorithm 2. This accelerated method is shown experimentally to be competitive
(in terms of matrix samples) with current accelerated schemes.

The sub-sampled matrix approximation algorithms and theory form a nat-
ural foundation for further investigations to generate low-rank matrix approx-
imation and matrix inverse approximations, as well as applying the matrix
approximations as preconditioners within a nonlinear optimization setting.
Also of interest is the practicality of extending these algorithms to efficiently
handle sparse input matrices.
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A Weight Matrix Interpretation

The fixed non-rotationally symmetric weight matrices on which classical sampled methods
are based (BFGS W = A and DFP W = A−1) produce an enhanced initial drop in the ap-
propriate residuals. Implementing algorithms algorithms 1 to 3 with W = A would produce
the same temporary effect but as noted before algorithms with W = A are automatically
sampled algorithms Moreover, the enhancement is transitory and such weighted algorithms
ultimately converge at the rates in theorems 1 to 3 as Bk resolves A. This is to be expected
since the algorithms sample and correct the residual A−Bk. Weights tuned to A become ir-
relevant as Bk → A. The heuristic underlying the accelerated algorithm, algorithm 4, is that
non-constant weighting based on the residual Wk = A − Bk should sample directions that
are not yet well resolved: as noted in the discussion of algorithm 4 such dynamic weighting
requires samples AU .

B Minimum Change Solutions

The KKT equations [12] for constrained minimum change formulations eqs. (4) and (5) are
solved analytically using a change of variables. Substitute

Â = W
−1/2
1 AW

−1/2
2 , B̂ = W

−1/2
1 BW

−1/2
2 , B̂k = W

−1/2
1 BkW

−1/2
2 ,

and

Û = W
1/2
1 U, V̂ = W

1/2
2 V,

into eq. (4) to get the unweighted problem,

B̂k+1 = arg min
B̂

{
1

2
‖B̂ − B̂k‖2F : ÛT B̂ V̂ = ÛT Â V̂

}
.

This reduces to

arg min
E

{
1

2
‖E‖2F : ÛTE V̂ − Z = 0

}
,

where E = B̂−B̂k and Z = ÛT (Â−B̂k)V̂ . Writing Λ for the matrix of Lagrange multipliers,
the Lagrangian is

L(E,Λ) =
1

2
Tr[ETE] + Tr[ΛT (ÛTE V̂ − Z)].

Setting the derivative of L(E,Λ) with respect to the matrix argument E to 0 gives the
Lagrange condition

∂L
∂E

=
1

2
Tr[dETE + ET dE] + Tr[V̂ ΛT ÛT dE] = 0,

which simplifies to
0 = E + ÛΛV̂ T .

Substituting into the constraint equation gives

ÛT (ÛΛV̂ T )V̂ + Z = 0,

which gives the multiplier matrix

Λ = −(ÛT Û)−1ÛT (Â− B̂k)V̂ (V̂ T V̂ )−1.

Substituting and converting back to the original variables gives eq. (11). The arguments for
eq. (5) are similar.
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