Supplemental Material: Randomized Iterative Methods for Matrix Approximation

Joy Azzam • Benjamin W. Ong • Allan A. Struthers

the date of receipt and acceptance should be inserted later

1 Additional Non-Accelerated Computational Results

The convergence test from $\S 4.1$ was performed on the remaining matrices tested in [3]. As before, these figures show: BFGS (\diamond) as specified by eq. (9); DFP (\diamond) as specified by eq. (8); NS (\otimes) as specified by Algorithm 1. SS1 (\bullet) as specified by Algorithm 2 $\mathrm{SS} 2(\square)$ as specified by Algorithm 3, All numerical experiments indicate that our non-accelerated sub-sampled algorithms converge predictably and consistently,
$-\S 1$ the LibSVM matrix Aloi of size $n=128$;
$-\S 1$ the LibSVM matrix Protein of size $n=357$;

- §1 the LibSVM matrix Real-Sim of size $n=20958$;
$-\S 1$ the Sparse Suite matrix ND6K of size $n=18000$;
$-\S 1$ the Sparse Suite matrix ex9 of size $n=3363$;
$-\S 1$ the Sparse Suite matrix Chem97ZtZ of size $n=2541$.
$-\S 1$ the Sparse Suite matrix Body of size $n=17556$.
$-\S 1$ the Sparse Suite matrix bcsstk of size $n=11948$.
$-\S 1$ the Sparse Suite matrix wathen of size $n=30401$.
Plots in $\S 1$ indicate that a maximum running time is reached for the subsampled methods.

2 Additional Accelerated Computational Results

The convergence test from $\S 5.1$ was performed on the remaining matrices tested in [3]. We illustrate the relative performance of the following algorithms:
$-(*)$ BFGSA, eq. (9) with adaptive sampling described in (3),

- (०) S1, eq. 6) with $W=I_{n}$,

Fig. 1 Hessian approximation for the matrix from the LibSVM problem, Aloi ($n=128$) [1] with $s=12=\lceil\sqrt{128}\rceil$. Dotted lines are theoretical convergence rates. Note, DFP and BFGS perform well.

Convergence Test - LibSVM - Protein

Fig. 2 Hessian approximation for the matrix from the LibSVM problem, Protein ($n=$ 357) [1] with $s=19=\lceil\sqrt{357}\rceil$. Dotted lines are theoretical convergence rates. Note, DFP performs well, BFGS performs poorly.

Fig. 3 Hessian approximation for the matrix from the LibSVM problem, Real-Sim ($n=$ 20, 958) 1$]$ with $s=145=\lceil\sqrt{20,958}\rceil$. Dotted lines are theoretical convergence rates for our algorithms. DFP performs well, BFGS does not converge.

Convergence Test - SparseSuite - ND6K

Fig. 4 Hessian approximation for the matrix from the Sparse Suite Library, ND6K ($n=$ 18, 000) [2] with $s=135=\lceil\sqrt{18,000}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

Fig. 5 Hessian approximation for the matrix from the Sparse Suite Library, ex9 ($n=3363$) [2] with $s=58=\lceil\sqrt{3363}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

Fig. 6 Hessian approximation for the matrix from the Sparse Suite Library, Chem97ZtZ $(n=2541)[2]$ with $s=51=\lceil\sqrt{2541}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

Fig. 7 Hessian approximation for the matrix from the Sparse Suite Library, Body ($n=$ 17,546) [2] with $s=133=\lceil\sqrt{17,546}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

Convergence Test - SparseSuite - Bcsstk

Fig. 8 Hessian approximation for the matrix from the Sparse Suite Library, bcsstk ($n=$ 11, 948) [2] with $s=110=\lceil\sqrt{11,948}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

Fig. 9 Hessian approximation for the matrix from the Sparse Suite Library, wathen $(n=$ 30, 401) [2] with $s=175=\lceil\sqrt{30,401}\rceil$. Dotted lines are theoretical convergence rates for our algorithms.

- (๑) SS1A+, Algorithm 4
- (ь) BFGS, eq. (9),
- ($\stackrel{\text { D DFP, eq. (8) }}{ }$
on the following matrices:
$-\S 2$ the LibSVM matrix Aloi of size $n=128$;
- §2 the LibSVM matrix Protein of size $n=357$;
- $\S 2$ the LibSVM matrix Real-Sim of size $n=20958$;
- §2 the Sparse Suite matrix ND6K of size $n=18000$;
- $\S 2$ the Sparse Suite matrix ex9 of size $n=3363$;
- $\S 2$ the Sparse Suite matrix Chem97ZtZ of size $n=2541$.
- \S_{2} the Sparse Suite matrix Body of size $n=17556$.
$-\S 2$ the Sparse Suite matrix bcsstk of size $n=11948$.
$-\delta 2$ the Sparse Suite matrix wathen of size $n=30401$.
The accelerated method algorithm 4 performs well on all matrices including those with large $n \approx 10^{4}$ (see $\S[2]$.

References

1. C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2 (2011), pp. 27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
2. T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans Math. Softw., 38 (2011), pp. 1:1-1:25, https://doi.org/10.1145/2049662.2049663 http://doi.acm.org/10.1145/2049662.2049663

Fig. 10 Hessian approximation for the matrix from the LibSVM problem, Aloi ($n=128$) [1] with $s=12=\lceil\sqrt{128}\rceil$.

Fig. 11 Hessian approximation for the matrix from the LibSVM problem, Protein ($n=$ 357) [1] with $s=19=\lceil\sqrt{357}\rceil$.

Fig. 12 Hessian approximation for the matrix from the LibSVM problem, Real-Sim ($n=$ 20, 958) [1] with $s=145=\lceil\sqrt{20,958}\rceil$.

Fig. 13 Hessian approximation for the matrix from the Sparse Suite Library, ND6K ($n=$ $18,000$) 2$]$ with $s=135=\lceil\sqrt{18,000}\rceil$.

Convergence Test - SparseSuite - ex9

Fig. 14 Hessian approximation for the matrix from the Sparse Suite Library, ex9 ($n=$ 3363) [2] with $s=58=\lceil\sqrt{3363}\rceil$.

Fig. 15 Hessian approximation for the matrix from the Sparse Suite Library, Chem97ZtZ $(n=2541)$ [2] with $s=51=\lceil\sqrt{2541}\rceil$.

Fig. 16 Hessian approximation for the matrix from the Sparse Suite Library, Body ($n=$ 17, 546) [2] with $s=133=\lceil\sqrt{17,546}\rceil$.

Fig. 17 Hessian approximation for the matrix from the Sparse Suite Library, bcsstk ($n=$ 11, 948) [2] with $s=110=\lceil\sqrt{11,948}\rceil$.

Fig. 18 Hessian approximation for the matrix from the Sparse Suite Library, wathen $(n=30,401)[2]$ with $s=175=\lceil\sqrt{30,401}\rceil$.
3. R. M. Gower and P. Richtárik, Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1380-1409, https://doi.org/10.1137/16M1062053, https://doi.org/10.1137/16M1062053

