
WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING1

(WRAP)∗2

FELIX KWOK † AND BENJAMIN W. ONG ‡3

Abstract. Schwarz waveform relaxation (SWR) methods have been developed to solve a wide4
range of diffusion-dominated and reaction-dominated equations. The appeal of these methods stem5
primarily from their ability to use non-conforming space-time discretizations; SWR are consequently6
well-adapted for coupling models with highly varying spatial and time scales. The efficacy of SWR7
methods are questionable however, since in each iteration, one propagates an error across the entire8
time interval. In this manuscript, we introduce an adaptive pipeline approach wherein one subdivides9
the computational domain into space-time blocks, and adaptively selects the waveform iterates which10
should be updated given a fixed number of computational workers. Our method is complementary11
to existing space and time parallel methods, and can be used to obtain additional speedup when the12
saturation point is reached for other types of parallelism. We analyze these waveform relaxation with13
adaptive pipelining (WRAP) methods to show convergence and the theoretical speedup that can be14
expected. Numerical experiments on solutions to the linear heat equation, the advection–diffusion15
equation, and a reaction–diffusion equation illustrate features and efficacy of WRAP methods for16
various transmission conditions.17

Key words. Waveform Relaxation; Domain Decomposition; Adaptivity; Parallel Computing18

AMS subject classifications. 65Y05, 65M2019

1. Introduction. The parallel numerical solution of time-dependent PDEs has20

long been the focus of the high performance computing community. The classical21

approach for leveraging high performance computing clusters is to apply a semi-22

discretization in time to the time-dependent PDE, and then apply domain decom-23

position (DD) in space, for which sophisticated and highly efficient methods exist24

[18]. For highly refined models however, accuracy or stability constraints often limit25

the size of the time step. The time stepping process, because of its sequential nature,26

consequently becomes the bottleneck. Hence, parallelization in the time direction has27

become an increasingly pressing issue, as attested to by the annual conference series in28

time-parallelization methods (sixth edition as of 2017, see http://parallelintime.org).29

One approach for parallelization in time arises from a different way of using do-30

main decomposition, the so-called waveform relaxation (WR) approach, see [6, 8, 1, 7,31

10] and references therein. The WR idea is to decompose first in space to obtain a col-32

lection of (coupled) space-time subproblems, then iterate while exchanging interface33

information over the whole time window. In fact, one can formally create waveform34

relaxation variants out of any stationary iterative method based on DD. For example,35

the Neumann-Neumann and Dirichlet-Neumann DD methods can be adapted into36

a WR method [13, 15]. WR formulations provide flexibility for discretizing space37

and time, especially for problems in which the dynamics vary greatly across subdo-38

mains; see [10] for an application on ocean–atmospheric coupling. On the other hand,39

when the dynamics are uniform and DD is used purely for parallelization purposes,40

the convergence of WR methods is typically slower than their elliptic counterparts41

and deteriorates as the time window length T increases [8, 13]. Despite this appar-42

ent drawback, WR exposes additional opportunities for parallelization, particularly43

∗Submitted to the editors DATE.
†Dept. of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (fe-

lix kwok@hkbu.edu.hk)
‡ Dept. of Mathematical Sciences, Michigan Technological University, Houghton, MI, 49931,

(ongbw@mtu.edu)

1

This manuscript is for review purposes only.

http://parallelintime.org
mailto:felix\protect _kwok@hkbu.edu.hk
mailto:felix\protect _kwok@hkbu.edu.hk
mailto:ongbw@mtu.edu

2 F. KWOK AND B. W. ONG

in the time direction. In [16], we presented the technique known as pipelining, in44

which different waveform iterations of the Schwarz WR method can be made to run45

simultaneously on different time steps, without affecting the mathematical properties46

of the algorithm. Pipeline parallelism is also possible for Neumann-Neumann and47

Dirichlet-Neumann WR relaxation methods [17]. In [5], the authors show that this48

can lead to a significant reduction in wall-clock time relative to a purely spatial DD49

implementation for the same total number of processors.50

Another drawback of the basic WR method is the issue of oversolving in the initial51

time steps. Consider for example an initial value problem (P), posed for t ∈ [0, T]52

and discretized using a uniform time step ∆t = T/N . This contains as a subproblem53

the same PDE, but posed on the shorter time interval t ∈ [0, T ′] with T ′ = M∆t,54

where M < N . Denoting this subproblem by (P′), we observe that any WR method55

for the problem (P) must require at least as many iterations to converge than the56

same WR method for (P′), at least if the stopping criterion is in terms of an Lp norm.57

This is because the iterates for (P′) are simply the restrictions of the iterates for (P)58

over a smaller time window, so convergence for (P) automatically implies convergence59

for (P′), but usually not the other way around. In practice, this means the error in60

the initial time steps is often several orders of magnitude smaller than the error at61

the final time, so the method is essentially using valuable computational cycles to62

oversolve the initial time steps relative to the overall tolerance.63

In this paper, we address the oversolving problem by presenting a modified version64

of the pipelining algorithm in [16]; we call this new method Waveform Relaxation65

with Adaptive Pipelining (WRAP), because the time window on which the PDE is66

actively being integrated changes over the duration of the computation. Initially, the67

method uses a small time window, whose size is determined by the number of available68

processors. Once a solution in this time window is solved to sufficient accuracy,69

we accept the solution and stop iterating; instead, we expand the time horizon and70

reallocate the processor to solve for a solution at a later time window. We keep doing71

this until the final time horizon coincides with the original interval [0, T]. We describe72

this method in more detail in Section 2. Note that this method is mathematically73

different from the original WR method, because not every time step is iterated the74

same number of times starting from the same initial and interface conditions. Thus,75

to analyze the convergence of this method, we present a theoretical model that applies76

both to the classical Schwarz WR method and to the optimized SWR method with77

Robin conditions. This is done in Section 3, where we also prove an estimate on the78

theoretical speedup ratio as a function of the number of available processors P . We79

will see that the average number of iterations required per time step depends on P ,80

but is independent of the time window size, unlike the original WR method. Finally,81

in Section 4 we present numerical results for a variety of diffusive problems and DD82

methods. The results confirm our theoretical analysis and show that it is possible for83

a WRAP method to obtain a speedup of at least 5–6 over a purely spatial DD method84

with sequential time-stepping.85

2. Algorithms. We start by considering an equivalent formulation of WR algo-86

rithms when the time horizon [0, T] is subdivided into shorter intervals. Suppose that87

the space–time domain, Ω× [0, T], is partitioned into space–time subdomains,88

{Ω1,Ω2, . . . ,ΩJ} ⊗ {I1, I2, . . . , IM},8990

where the spatial partitioning {Ω1,Ω2, . . . ,ΩJ} can be overlapping or non-overlapping,91

with the interfaces denoted by Γj := ∂Ωj \ ∂Ω, and the temporal partitioning is92

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 3

Im = [Tm−1, Tm],m = 1, . . . ,M . Let u
[k]
j,m(x, t) denote the kth waveform iterate in93

Ωj×Im. Additionally, for ease of notation later, we denote the (spatially) distributed94

solution as u
[k]
m (x, t), where95

u[k]
m (x, t) = {u[k]

j,m(x, t)}Jj=1.96
97

Let integrate denote a subroutine that computes a numerical approximation to the98

spatially distributed solution u
[k]
m (x, t). Specifically, the routine99

[g[k]
m , h[k]

m] = integrate(Im, f, g
[k]
m−1, h

[k−1]
m),100101

takes as its input:102

• the interval of integration, Im = [Tm−1, Tm];103

• boundary conditions for the PDE, f , on ∂Ω;104

• the (distributed) solution at the start of the time interval, g
[k]
m−1 = u

[k]
m (x, Tm−1);105

• the (time-dependent) coupling conditions, h
[k−1]
m ;106

and returns as its output:107

• the (distributed) solution at the end of the time interval, g
[k]
m = u

[k]
m (x, Tm);108

• the updated (time-dependent) coupling conditions, h
[k]
m .109

For example, in a classical Schwarz Waveform Relaxation (SWR) implementation, the110

coupling conditions, h
[k]
m = {h[k]

j,m}Jj=1 would be the set of Dirichlet interface conditions111

required to solve the PDE on {Ωj} × Im, i.e., h
[k]
j,m = u

[k]
j,m|Γj×Im . The computation112

then proceeds as follows.113

for m = 1:M114

specify h
[0]
m (t) % guess initial coupling conditions115

end116

for k = 1:K117

Set g
[k]
0 = u0(x) % initial condition118

for m = 1:M119

[g
[k]
m , h

[k]
m] = integrate(Im, f, g

[k]
m−1, h

[k−1]
m)120

end121

end122

Note that we have split the integration over [0, T] into a sequence of shorter integration123

steps over Im, m = 1, . . . ,M . Pipeline parallelism is now possible [16], because multi-124

ple tasks (i.e., multiple integrate routine calls) can be launched once the integrate125

routine returns g
[k]
m and h

[k]
m . For example, the completion of126

[g
[1]
1 , h

[1]
1] = integrate(I1, f, g

[1]
0 , h

[0]
1),127

allows the spawning of two additional calls,128

[g
[1]
2 , h

[1]
2] = integrate(I2, f, g

[1]
1 , h

[0]
2),129

[g
[2]
1 , h

[2]
1] = integrate(I1, f, g

[2]
0 , h

[1]
1).130

In general, a dependency graph can be generated to identify tasks that can be run in131

parallel. In Figure 1, the output of each integrate routine is shown in the purple132

boxes. Note that tasks belonging to the same column can all be run concurrently, pro-133

vided enough processors are available. More precisely, if JP processors are available134

and each task requires J processors to complete (because we have J spatial subdo-135

mains), then the tasks belonging to the first P rows can be executed in parallel. Once136

all these tasks are completed, then the next group of P rows can be executed, in a137

This manuscript is for review purposes only.

4 F. KWOK AND B. W. ONG

pipeline fashion. This pipeline works best if the execution of each task (i.e. purple138

box) takes roughly the same wall time.

g
[1]
1 , h

[1]
1 g

[1]
2 , h

[1]
2 g

[1]
3 , h

[1]
3 g

[1]
4 , h

[1]
4 g

[1]
5 , h

[1]
5

g
[2]
1 , h

[2]
1 g

[2]
2 , h

[2]
2 g

[2]
3 , h

[2]
3 g

[2]
4 , h

[2]
4

g
[3]
1 , h

[3]
1 g

[3]
2 , h

[3]
2 g

[3]
3 , h

[3]
3

g
[4]
1 , h

[4]
1 g

[4]
2 , h

[4]
2

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 1: Dependency graph for classical Schwarz WR or Neumman–Neumann WR.
The variables within the purple boxes denote the outputs of the integrate routine.
The width of the arrows reflect the size of information that needs to be passed to the
newly spawned tasks. If the execution of each task (purple box) takes roughly the
same wall time, each column of tasks can be simultaneously computed if sufficient
processors are available.

139
One way to save computation is to prune the dependency graph and remove140

tasks that are either unnecessary or ineffective in reducing the error in the solution.141

To accomplish this pruning, we propose an adaptive framework that utilizes two key142

ideas. Firstly, suppose for example, that the error associated with computing u
[2]
1143

satisfies some user prescribed tolerance. Then, one can stop iterating on time interval144

I1 and use the converged solution at the end of this interval to spawn any future task145

involving interval I2, thereby reducing the total number of tasks within each column.146

An example of this modified dependency graph is shown in Figure 2. More generally,147

one can utilize the integrate routine to return (g
[k]
m , h

[k]
m) given (g

[j]
m−1, h

[k−1]
m), where148

j ≤ k i.e.,149

[g[k]
m , h[k]

m] = integrate(Im, f, g
[j]
m−1, h

[k−1]
m), where j ≤ k.150151

Secondly, if we suspect that a certain g
[k]
m−1 is so inaccurate that further iteration in152

Im, Im+1, . . . would not lead to a significant reduction in error, then it is advanta-153

geous to wait until a more accurate solution g
[j]
m−1, j > k becomes available, and use154

that as the initial conditions for further integration. For example, g
[2]
1 can be used155

instead of g
[1]
1 when solving for g

[1]
2 , as shown in Figure 3. In other words, we have156

shifted everything to the right of (g
[k]
1 , h

[k]
1) downward and to the right and changed157

the dependencies, as shown in red in Figure 3. More generally, one can utilize the158

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 5

g
[1]
1 , h

[1]
1 g

[1]
2 , h

[1]
2 g

[1]
3 , h

[1]
3 g

[1]
4 , h

[1]
4 g

[1]
5 , h

[1]
5

g
[2]
1 , h

[2]
1 g

[2]
2 , h

[2]
2 g

[2]
3 , h

[2]
3 g

[2]
4 , h

[2]
4

g
[3]
2 , h

[3]
2 g

[3]
3 , h

[3]
3

g
[4]
2 , h

[4]
2

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 2: Dependency graph for classical Schwarz WR or Neumman–Neumann WR

if the error associated with u
[2]
1 satisfies some user prescribed tolerance. The new

dependencies are shown in red.

integrate routine to return (g
[k]
m , h

[k]
m) given (g

[j]
m−1, h

[k−1]
m), where j ≥ k, i.e.,159

[g[k]
m , h[k]

m] = integrate(Im, f, g
[j]
m−1, h

[k−1]
m), where j ≥ k.160161

This transformation changes the mathematical properties of the WR algorithm, and162

new convergence estimates must be proved, which we will do in Section 3.163

We are now ready to present the Waveform Relaxation with Adaptive Pipelining164

(WRAP) method. To begin, let tasklist be a list1 of tuples (k,m), corresponding to165

the solution values (g
[k]
m , h

[k]
m) that can presently computed because the dependencies166

are satisfied. For example, consider the dependency graph for classical Schwarz WR,167

Figure 1. The initial tasklist consists of the entry (1, 1), since only one iteration in168

interval I1 can be computed given the initial condition at time t0. After (g
[1]
1 , h

[1]
1) is169

computed, the two tasks170

[g
[1]
2 , h

[1]
2] = integrate(I2, f, g

[1]
1 , h

[0]
2),171

[g
[2]
1 , h

[2]
1] = integrate(I1, f, g

[2]
0 , h

[1]
1).172

can be spawned if they are necessary, i.e., if the interval I2 exists, and that (g
[1]
1 , h

[1]
1)173

has not already converged to sufficient accuracy. In this case, we remove the entry174

(1, 1) from tasklist, and add to it the two new entries (1, 2) and (2, 1). In general,175

the following algorithm can be used to update tasklist adaptively:176

Suppose task = tasklist[i] has been completed

the task list can then be updated as follows.

if (task.k == 1) && (task.m < Nt)

tasklist.append(task.k,task.m+1)

end

1which will be implemented as a hash map for efficiency.

This manuscript is for review purposes only.

6 F. KWOK AND B. W. ONG

g
[1]
1 , h

[1]
1

g
[2]
1 , h

[2]
1 g

[1]
2 , h

[1]
2 g

[1]
3 , h

[1]
3 g

[1]
4 , h

[1]
4

g
[3]
1 , h

[3]
1 g

[2]
2 , h

[2]
2 g

[2]
3 , h

[2]
3

g
[4]
1 , h

[4]
1 g

[3]
2 , h

[3]
2

· · ·

· · ·

· · ·

· · ·

Fig. 3: Dependency graph for classical Schwarz WR or Neumman–Neumann WR if
the solution in I1 is iterated twice before the pipeline computations are initiated. The
new dependencies are shown in red.

if error_estimate(g(task.k,task.m),h(task.k,task.m)) > TOL

tasklist.append(task.k+1,task.m)

end

tasklist.remove(task)

Now suppose ntasks <∞ is the maximum number of tasks that can be executed si-177

multaneously by our machine2, and there are more than ntasks elements in tasklist.178

To choose which tasks in tasklist to execute, we use the heuristic that more accu-179

rate initial conditions always leads to faster error reduction: we select from the list180

ntasks elements with the smallest m, i.e., corresponding to the earliest time intervals.181

Thus, tasks with larger m will be delayed until the solution at earlier time intervals182

has converged.183

There are two limiting cases of interest. If ntasks = 1 and time window Im =184

[Tm−1, Tm] consists of a single time step, ∆t, then the WRAP framework simplifies185

to a classical domain decomposition method, where g
[k]
m is iterated to convergence186

before computing g
[1]
m+1. The second limiting case is when all the tasks in tasklist187

are simultaneously computed before a new task list is generated based on the recently188

completed tasks. We shall denote this as ntasks = ∞, with the understanding that189

the maximum number of simultaneous tasks that can be computed is limited by the190

number of time steps used in the discretization. In this case, WRAP produces iterates191

that are the same to those of classical WR up to the preset tolerance TOL, since the192

dependency graph is identical.193

3. Convergence Analysis. To understand the convergence properties of the194

WRAP method, we first introduce a computational model that is valid for both clas-195

2If a hybrid MPI-OpenMP framework is used to implement the adaptive WR methods, ntasks
can be initialized to the number of processing cores available on each socket.

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 7

sical and adaptive WR methods. Consider again the dependency graph for classical196

WR, shown in Figure 1. Let G(m, k) and H(m, k) be some error measures related to197

the iterates g
[k]
m and h

[k]
m , which must be suitably defined according to the problem198

and method chosen. If the error measures satisfy the coupled recurrence199

(1)

{
G(m, k) ≤ αG(m− 1, k) + H(m, k),

H(m, k + 1) ≤ G(m− 1, k) + βH(m, k),
200

then the method converges if G(m, k) and H(m, k) tend to zero as k → ∞ for all201

1 ≤ m ≤ M . In the next two theorems, we show that for the linear heat equation,202

this computational model is valid for both classical SWR and optimized SWR with203

Robin transmission conditions, provided we choose the error measures correctly. Since204

the heat equation is linear, it suffices to consider the homogeneous problem with an205

arbitrary initial guess along the artificial interfaces.206

Theorem 3.1. Consider the classical Schwarz WR applied to the homogeneous207

heat equation,208

∂tu
[k]
j −∆u

[k]
j = 0, u

[k]
j

∣∣∣
t=T0

= 0,209

with initial guesses on the artificial interfaces ∂Ωj \ ∂Ω, j = 1, . . . , J . Denote the210

time sub-intervals by I1, . . . , IM , where Im = [Tm−1, Tm], m = 1, 2, . . . ,M . If211

G(m, k) = max
j
‖u[k]

j (·, Tm)‖L∞(Ωj),212

H(m, k) = max
j

(
sup
t∈Im

‖u[k]
j (·, t)‖L∞(∂Ωj)

)
,213

214

then {G(m, k)}k,m≥1 and {H(m, k)}k,m≥1 satisfy the recurrence (1) for some 0 <215

α < 1 and 0 < β < 1.216

Proof. We consider the solution at the kth iteration inside the patch (x, t) ∈217

Ωj×Im. The solution satisfies ∂tu
[k]
j −∆u

[k]
j = 0 with initial and boundary conditions218

‖u[k]
j (·, Tm−1)‖L∞(Ωj) ≤ G(m, k), ‖u[k]

j (·, t)‖L∞(∂Ωj) ≤ H(m, k) ∀t ∈ Im.219
220

Since the PDE is linear, it suffices to estimate G(m, k) by first setting H(m, k) = 0,221

then estimating G(m, k) by setting G(m − 1, k) = 0, and finally adding the two222

estimates together. The same procedure can be applied to estimate H(m, k + 1).223

Thus, we first consider the subdomain problem with zero interface conditions224

∂tu
[k]
j −∆u

[k]
j = 0, u

[k]
j

∣∣∣
t=Tm−1

= 1, u
[k]
j

∣∣∣
∂Ωj

= 0.225

By the maximum principle, we have226

0 ≤ u[k]
j (x, t) ≤ αj(t) < 1, ∀(x, t) ∈ Ωj × Im227

In anticipation of showing convergence of the solution at the final time Tm, u
[k]
j (x, Tm),228

we define229

αj := αj(Tm), α := max
j
αj < 1.230

Note that although α depends on the length of the time interval Im and on the231

diameter of the subdomains, such an α always exists.232

This manuscript is for review purposes only.

8 F. KWOK AND B. W. ONG

Next, if we consider the subdomain problem with zero initial conditions,233

∂tu
[k]
j −∆u

[k]
j = 0, u

[k]
j

∣∣∣
t=Tm−1

= 0, u
[k]
j

∣∣∣
∂Ωj

= 1,234

we get trivially that235

0 ≤ u[k]
j (x, t) ≤ 1, ∀(x, t) ∈ Ωj × Im.236

However, on a set Γ ⊂ Ωj that is at a distance of at least δ away from ∂Ωj , we in fact237

have [7, Lemma 3.1]238

‖u[k]
j (·, t)‖L∞(Γ) ≤ β < 1,239

where β depends on the distance δ.240

241

Thus, for the general problem ∂tu
[k]
j −∆u

[k]
j = 0 with242

|u[k]
j (x, Tm−1)| ≤ G(m, k), ∀x ∈ Ωj , |u[k]

j (x, t)| ≤ H(m, k), ∀(x, t) ∈ ∂Ωj × Im,243

we have |u[k]
j (·, t)| ≤ αj(t)G(m− 1, k) +H(m, k), which leads to244

(2) |u[k]
j (·, Tm)| ≤ αG(m− 1, k) +H(m, k).245

However, the Dirichlet values transmitted to the neighbours of Ωj lie in a set Γ at246

least δ away from ∂Ωj , so we have the estimate247

‖u[k]
j (·, t)‖L∞(Γ) ≤ G(m− 1, k) + βH(m, k), ∀t ∈ Im.248

For OSWR, we have the following result if we use P 1 finite elements for the spatial249

discretization and the Theta method [12] with 1
2 ≤ θ ≤ 1 for discretization in time3.250

For simplicity, we assume that each time block consists of a single time step, and251

that the spatial decomposition is non-overlapping with no cross points. We denote by252

Γij = ∂Ωi ∩ ∂Ωj the interface bewteen Ωi and Ωj .253

Theorem 3.2. Consider the optimized Schwarz WR applied to the homogeneous254

heat equation discretized with the Theta method in time and P 1 finite elements in255

space over a shape regular, quasi-uniform triangulation Th. More precisely, let u
[k]
jm ≈256

u
[k]
j (·, Tm) satisfy257

∫
Ωj

v

(
u

[k]
jm − u

[k]
j,m−1

∆tm

)
+

∫
Ωj

∇w̄[k]
jm · ∇v +

∫
∂Ωj\∂Ω

pw̄
[k]
jmv =

∫
∂Ωj\∂Ω

R
[k]
jmv, ∀v ∈ V hj ,

(3)

258

R
[k+1]
jm |Γij

= (2pw̄
[k]
im −R

[k]
im)|Γij

,(4)259
260

where ∆tm = Tm−Tm−1, w̄
[k]
jm = (1−θ)u[k]

j,m−1 +θu
[k]
jm with 1

2 ≤ θ ≤ 1, and the initial261

Robin traces R
[1]
jm are posed on the artificial interfaces ∂Ωj \ ∂Ω, j = 1, . . . , J , cf. [3].262

If263

G(m, k) =

1

2

∑
j

‖u[k]
jm‖

2
L2(Ωj)

1/2

, H(m, k) =

∆tm
∑
j

‖R[k]
jm‖

2
L2(∂Ωj\∂Ω)

1/2

,264

265

3This method is also known as the θ scheme in [9], or the generalized trapezoidal rule in [11].

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 9

then {G(m, k)}k,m≥1 and {H(m, k)}k,m≥1 satisfy the recurrence (1) for α = 1 and266

some 0 < β < 1, where β depends on the length of the time step size ∆tm.267

Proof. Let v = w̄
[k]
jm in equation (3) and calculate268

269

(5)
1

2∆tm

∫
Ωj

[
(u

[k]
jm)2 − (u

[k]
j,m−1)2 + (2θ − 1)(u

[k]
jm − u

[k]
j,m−1)2

]
+

∫
Ωj

|∇w̄[k]
jm|

2
270

=

∫
∂Ωj\∂Ω

(R
[k]
jm − pw̄

[k]
jm)w̄

[k]
jm =

∫
∂Ωj\∂Ω

[
(R

[k]
jm)2 − (2pw̄

[k]
jm −R

[k]
jm)2

]
.271

272

Using the update formula (4) and the fact that 2θ− 1 ≥ 0, we obtain, after summing273

over all subdomains Ωj , that274

275

1

2

∑
j

‖u[k]
jm‖

2
L2(Ωj) + ∆tm

∑
j

‖R[k+1]
jm ‖2L2(∂Ωj\∂Ω)276

≤ 1

2

∑
j

‖u[k]
j,m−1‖

2
L2(Ωj) + ∆tm

∑
j

‖R[k]
j ‖

2
L2(∂Ωj\∂Ω).277

278

In other words, we have279

G(m, k)2 +H(m, k + 1)2 ≤ G(m− 1, k)2 +H(m, k)2,280

which immediately implies the recurrence relation (1) with α = β = 1. To see that281

β can in fact be chosen to be less than 1, it suffices by linearity to consider the case282

where u
[k]
j,m−1 = 0 for all j and show that H(m, k + 1) ≤ βH(m, k) for some β < 1.283

We proceed by substituting u
[k]
j,m−1 = 0 into equation (3), so that w̄

[k]
jm = θu

[k]
jm:284

(6)

∫
Ωj

u
[k]
jmv

∆tm
+ θ

(∫
Ωj

∇u[k]
jm · ∇v +

∫
∂Ωj\∂Ω

pu
[k]
jmv

)
=

∫
∂Ωj\∂Ω

R
[k]
jmv.285

By Lemma 4.10 in [18] and Theorem 4.5.11 in [2], there exists a discrete harmonic286

extension v ∈ V hj of R
[k]
jm, such that v|∂Ωj\∂Ω = R

[k]
jm and287

‖v‖H1(Ωj) ≤ C‖R
[k]
jm‖H1/2(∂Ωj\∂Ω) ≤ Ch−1/2‖R[k]

jm‖L2(∂Ωj\∂Ω).288

Substituting this v into equation (6) and using the Cauchy-Schwarz inequality on the289

left, we obtain290 ∫
∂Ωj\∂Ω

(R
[k]
jm)2 ≤ 1

∆tm
‖u[k]

jm‖L2(Ωj) ‖v‖L2(Ωj) + θ|u[k]
jm|H1(Ωj) |v|H1(Ωj)291

+ θp‖u[k]
jm‖L2(∂Ωj\∂Ω) ‖R

[k]
jm‖L2(∂Ωj\∂Ω)292

≤
(

θ

∆tm
‖u[k]

jm‖
2
L2(Ωj) + θ2|u[k]

jm|
2
H1(Ωj)

)1/2(
1

θ∆tm
‖v‖2L2(Ωj) + |v|2H1(Ωj)

)1/2

293

+ θp‖u[k]
jm‖L2(∂Ωj\∂Ω) ‖R

[k]
jm‖L2(∂Ωj\∂Ω)294

≤
(

θ

∆tm
‖u[k]

jm‖
2
L2(Ωj) + θ2|u[k]

jm|
2
H1(Ωj)

)1/2(
C1√
θh∆tm

+ C2p

)
‖R[k]

jm‖L2(∂Ωj\∂Ω).295
296

This manuscript is for review purposes only.

10 F. KWOK AND B. W. ONG

Dividing both sides by ‖R[k]
jm‖L2(∂Ωj\Ω), we see that297 ∫

∂Ωj\∂Ω

(R
[k]
jm)2 ≤ C̄

(
θ

∆tm
‖u[k]

jm‖
2
L2(Ωj) + θ2|u[k]

jm|
2
H1(Ωj)

)
,298

where C̄ > 1 depends on ∆tm, h and p. Substituting into equation (5), and keeping299

in mind the assumption that u
[k]
j,m−1 = 0, we deduce that300 ∫

∂Ωj\∂Ω

[
(R

[k]
jm)2 − (2pw̄

[k]
jm −R

[k]
jm)2

]
=

θ

∆tm

∫
Ωj

(u
[k]
jm)2 + θ2

∫
Ωj

|∇u[k]
jm|

2
301

≥ C̄−1

∫
∂Ωj\∂Ω

(R
[k]
jm)2.302

303

We conclude that304 ∫
∂Ωj\∂Ω

(2pw̄
[k]
jm −R

[k]
jm)2 ≤ (1− C̄−1)

∫
∂Ωj\∂Ω

(R
[k]
jm)2,305

so summing over all j shows that H(m, k + 1) ≤ βH(m, k) with β = 1− C̄−1 < 1, as306

required.307

3.1. The non-adaptive case. We use the above computational model to de-308

duce an error estimate for classical Schwarz WR. The case of optimized SWR can be309

derived similarly. Note that this is only a linear estimate and is less sharp than the310

estimate in [7], but the linear estimate is much more amenable to our later analysis,311

when the dependency graph no longer resembles Figure 1.312

Lemma 3.3. Consider the classical Schwarz WR with313

u
[k]
j (x, T0) = 0 and ‖u[1]

j (·, t)‖L∞(∂Ωj) ≤ 1314

for all j. Let ξ ≥ 1 and η > β > 0 be constants that satisfy (ξ − α)(η − β) = 1. Then315

|u[k]
j (x, t)| ≤ G(m− 1, k) +H(m, k) on Ωj × [Tm−1, Tm],316

where317

H(m, k) ≤ ξm−1ηk−1,(7)318

G(m, k) ≤ (η − β)ξmηk−1.(8)319320

Proof. Since ξ ≥ 1 and H(m, 1) ≤ 1 by definition, we see that equation (7) holds321

for k = 1. Moreover, since (η − β)ξ = 1 + α(η − β) > 1, equation (2) implies322

G(1, k) ≤ H(1, k) ≤ ηk−1 ≤ (η − β)ξηk−1,323

which proves equation (8) for m = 1. We now prove equations (7) and (8) by induction324

on m and k using the recurrence (1). Indeed, we have325

H(m, k + 1) ≤ G(m− 1, k) + βH(m, k) ≤ (η − β)ξm−1ηk−1 + βξm−1ηk−1 = ξm−1ηk.326

Moreover,327

G(m, k) ≤ αG(m− 1, k) +H(m, k) ≤ (α(η − β) + 1)ξm−1ηk−1 = (η − β)ξmηk−1,328

since 1 = (ξ − α)(η − β). We have thus proved equations (7) and (8) inductively, as329

required.330

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 11

Note that there is some flexibility in choosing ξ and η, as long as the constraint331

(ξ − α)(η − β) = 1 is satisfied. One example is332

ξ =
1 + α

1− β
> 1, η =

1 + αβ2

1 + αβ
< 1.333

We see from Lemma 3.3 that H(m, k) converges to zero as k → ∞ for fixed m, but334

the constant increases with m. One can choose an η arbitrarily close to, but larger335

than, β, but one must then live with the growth in m that comes from a large ξ.336

3.2. Adaptive Case. To analyze the adaptive case, we start by referring to the337

dependency graph in Figure 3. To facilitate the analysis, it is more convenient to338

label each task in a row with the same iteration number k; thus, from now on we339

redefine the iteration number k as in Figure 4. The old and new labels are related by

G(1,1)
H(1,1)

G(1,2)
H(1,2)

G(2,2)
H(2,2)

G(3,2)
H(3,2)

G(4,2)
H(4,2)

G(1,3)
H(1,3)

G(2,3)
H(2,3)

G(3,3)
H(3,3)

G(1,4)
H(1,4)

G(2,4)
H(2,4)

· · ·

· · ·

· · ·

· · ·

Fig. 4: This figure gives the dependency graph for the same iterative process previously
shown in Figure 3, but with new labels for k, and where {G(m, k), H(m, k)} in each

task denotes the error measures related to the iterates g
[k]
m and h

[k]
m respectively. The

new labels, k, are related to the old labels, k̃, by the relation k = k̃−Dm, where Dm is
the delay in starting the method for the mth time interval because processors are not
available to complete this task. In this example, the solution in I1 is iterated twice
before the pipeline computations are initiated. Hence, we have D2 = D3 = D4 = 1.
The new labels are shown in red.

340

Dm, the delay in starting the method for the mth time interval because processors are341

not available to compute the mth interval. This delay does not include the “burn-in”342

time, i.e., the amount of time waiting for appropriate initial or boundary conditions to343

begin the computation on the mth time interval. For the adaptive SWR for instance,344

we have345

G(m, k +Dm) = max
j
‖g[k]
j,m‖L∞(Ωj).346

This manuscript is for review purposes only.

12 F. KWOK AND B. W. ONG

The delay Dm has the following properties:347

• Dm ≤ Dm+1 for all m;348

• If the machine can run P tasks simultaneously, then D1 = · · · = DP = 0.349

This is because the first P time intervals always have priority over later times350

in the task list.351

With the new numbering, our computational model becomes352

G(m, k) ≤ αG(m− 1, k) + H(m, k), k > Dm,(9)353

H(m, k + 1) ≤ G(m− 1, k) + βH(m, k), k > Dm,(10)354

H(m, k) ≤ 1, k ≤ Dm.(11)355356

The last condition simply indicates that there can be no reduction of error in the357

interface conditions until the method starts iterating on the interval Im. To solve358

equations (9)–(11), we need the following lemma, whose proof is identical to that of359

Lemma 3.3.360

Lemma 3.4. Let ξ ≥ 1 and η > β > 0 be constants that satisfy (ξ−α)(η−β) = 1.361

Let Ar = Ar(ξ, η) be any non-negative function of ξ and η such that362

(12) ξm−1ηDm

m∑
r=1

Ar(ξ, η) ≥ 1.363

If G(m, k) and H(m, k) satisfy equations (9)–(11) for all m, k ≥ 1, then364

H(m, k) ≤ ξm−1ηk−1
m∑
r=1

Ar, G(m, k) ≤ (η − β)ξmηk−1
m∑
r=1

Ar.365

We are now going to choose the Ar so that condition (12) is satisfied.366

Lemma 3.5. Suppose the hypotheses of Lemma 3.4 hold. For each m ≥ 1, define367

Am = ξ1−mη−Dm max
(

0, 1−
∑m−1
r=1 Arξ

m−1ηDm

)
.368

Then369

(13) ξm−1ηk−1
m∑
r=1

Ar = max
1≤j≤m

ξm−jηk−1−Dj ,370

so that371

H(m, k) ≤ max
1≤j≤m

ξm−jηk−1−Dj , G(m, k) ≤ (η − β) max
1≤j≤m

ξm−j+1ηk−1−Dj .372

Proof. By induction on m. The base case m = 1 reads373

ηk−1A1 = ηk−1η−Dm = max
1≤j≤m

ηk−1−Dj .374

Assume inductively that equation (13) holds for m. Then for m+ 1, we have375

ξmηk−1
m+1∑
r=1

Ar = ξ max
1≤j≤m

ξm−jηk−1−Dj + ξmηk−1Am+1376

= max
1≤j≤m

ξm+1−jηk−1−Dj + max
(
0, ηk−1−Dm+1 −

∑m
r=1Arξ

mηk−1
)

377

= max
1≤j≤m

ξm+1−jηk−1−Dj + max

(
0, ηk−Dm+1 − ξ max

1≤j≤m
ξm−jηk−1−Dj

)
378
379

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 13

Thus,380

ξmηk−1
m+1∑
r=1

Ar =

η
k−1−Dm+1 , if ηk−1−Dm+1 ≥ max

1≤j≤m
ξm+1−jηk−1−Dj ,

max
1≤j≤m

ξm+1−jηk−1−Dj , otherwise.
381

It follows that382

ξmηk−1
m+1∑
r=1

Ar = max
1≤j≤m+1

ξm+1−jηk−1−Dj ,383

which completes the induction.384

3.3. Theoretical Speedup. We are now ready to estimate the theoretical speedup385

of WRAP when a only a finite number of tasks can be executed simultaneously. Let386

P = ntasks be this number. Then one cannot start iterating on the time interval387

Im until the iteration on Im−P has converged. Define Em to be the ending time for388

the mth time interval, i.e., the smallest k such that H(m, k) ≤ ε, where ε is some389

predefined tolerance. Then by definition, we have Em = k, where390

H(m, k + 1) ≤ ε ≤ H(m, k) ≤ max
1≤j≤m

ξm−jηk−1−Dj .391

Suppose the maximum on the right hand side of the above equation is achieved for392

j = j∗. Then taking logarithms yields393

(m− j∗) log ξ − (Em −Dj∗ − 1)| log η| ≥ −| log ε|,394

or395

(14) Em ≤ 1 +Dj∗ +
| log ε|
| log η|

+ (m− j∗) log ξ

| log η|
.396

Moreover, since j∗ maximizes ξm−jηk−1−Dj , we see that397

(m− j∗) log ξ − (k − 1−Dj∗)| log η| ≥ (m− j) log ξ − (k − 1−Dj)| log η|,398

for all 1 ≤ j ≤ m. In other words, we have399

Dj∗ − j∗
log ξ

| log η|
≥ Dj − j

log ξ

| log η|
, j = 1, . . . ,m.400

This function will be important later, so let us define401

Fm := Dm −m(log ξ/| log η|).(15)402403

We can then rewrite equation (14) as404

(16) Em −Dm ≤ 1 +
| log ε|
| log η|

+ max
1≤j≤m

Fj − Fm.405

Note that the left hand side is the number of iterations required for convergence in406

the mth time window.407

The term
(

1 + log ε
log η

)
, on the right hand side of equation (16), is comparable to the408

iteration count for a classical (non WR) method on the corresponding elliptic prob-409

lem, which is bounded by
(

1 + log ε
log β

)
. The remaining terms measure the additional410

This manuscript is for review purposes only.

14 F. KWOK AND B. W. ONG

iterations required because of the adaptive waveform relaxation. If max
1≤j≤m

Fj − Fm411

were bounded by a constant, then we will have proven that the iteration count is412

independent of the time horizon. This is a difficult task in general, because the error413

estimates in our computational model is only an upper bound; however, we will be414

able to bound Em as a constant times m, which means the iteration count per time415

interval is bounded by a constant in an amortized sense.416

417

Bounding Em when m ≤ P is trivial. Recall that Dm = 0 for m = 1, . . . , P ,418

because the first P time intervals have priority over later time intervals. Equation (15)419

simplifies to420

Fm = −m log ξ

| log η|
, m = 1, . . . , P.(17)421

422

Hence, equation (16) for m = 1, 2, . . . , P gives423

Em ≤ 1 +
| log ε|
| log η|

+ max
1≤j≤m

Fj − Fm = 1 +
| log ε|
| log η|

,424
425

which is close to the iteration count for a classical WR method on these time blocks426

when η ≈ β. If m > P , Dm is no longer zero, and we need to resort to the following427

recurrence relation to derive an equation for the delay,428

Dm+P = Em − P, m = 1, 2,(18)429430

From equation (15), we have431

Fm+P = Dm+P − (m+ P)
log ξ

| log η|
432

= (Em − P)− (m+ P)
log ξ

| log η|
433

≤ 1 +
| log ε|
| log η|

+ max
1≤j≤m

Fj −Dm − P
log ξ

| log η|
− P,434

435

or equivalently,436

Fm ≤ 1 +
| log ε|
| log η|

+ max
1≤j≤(m−P)

Fj −Dm−P − P
log ξ

| log η|
− P.(19)437

438

Since Dm = 0 for m = 1, . . . , P , it will be convenient to simplify max
1≤j≤m

Fm iteratively439

for `P < m ≤ (` + 1)P . Consider the case ` = 1, i.e., P < m ≤ 2P . Using440

equation (17), equation (19) simplifies to441

Fm ≤ 1 +
| log ε|
| log η|

− (P + 1)
log ξ

| log η|
− P.442

443

If444

∆ := 1 +
| log ε|
| log η|

− P
(

1 +
log ξ

| log η|

)
445

is positive, then446

max
1≤m≤2P

Fm ≤ −
log ξ

| log η|
+ ∆,447

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 15

otherwise it is just bounded by − log ξ/| log η|. Repeating this argument for ` =448

2, 3, . . ., we see that for `P < m ≤ (`+ 1)P ,449

Fm ≤

− log ξ

| log η|
+ `∆, ∆ > 0,

− log ξ

| log η|
+ ∆, ∆ ≤ 0.

450

By substituting the above into equation (19), we obtain the following theorem.451

Theorem 3.6. Let Em be the time to convergence for the mth time window, and452

let ` be an integer such that `P < m ≤ (`+ 1)P . Then453

Em ≤ 1 +
| log ε|
| log η|

+ (m− 1)
log ξ

| log η|
+ ` ·max

{
0, 1 +

| log ε|
| log η|

− P
(

1 +
log ξ

| log η|

)}
.454

455

To estimate the wall time needed to complete the integration, we introduce the concept456

of effective parallel linear solves (EPLS), which is defined as the number of columns in457

the dependency graph, assuming that all tasks in a column are simultaneously com-458

puted. For the standard time-stepping algorithm, the number of EPLS is estimated459

by460

M

(
1 +
| log ε|
| log β|

)
=: kstd,461

where β < η is the actual contraction rate when we have exact initial conditions,462

and
(

1 + | log ε|
| log β|

)
is the number of iterations required for convergence on a single time463

interval. For the WRAP algorithm, the EPLS is given by EM + (M − 1), where the464

extra M − 1 solves arise because the task involving time interval IM can only appear465

in the task list after M − 1 updates, even if there is no delay in execution. Letting466

M − 1 = `P + r, where 0 ≤ r < P , we have467

EPLS ≤

(`+ 1)
(

1 + | log ε|
| log η|

)
+ r

(
1 + log ξ

| log η|

)
, P <

(
1 + | log ε|

| log η|

)
/
(

1 + log ξ
| log η|

)
,

1 + | log ε|
| log η| + (M − 1)

(
1 + log ξ

| log η|

)
, otherwise.

468

We see that the ratio,469

P ∗ =

(
1 +
| log ε|
| log η|

)
/

(
1 +

log ξ

| log η|

)
,470

determines the optimal number of processors per subdomain. In fact, if P < P ∗, then471

we have472

EPLS ≤
(

1 +
| log ε|
| log η|

)
(`+ 1 + r/P ∗) ≤ M + P − 1

P

(
1 +
| log ε|
| log η|

)
.473

If we have η ≈ β, then the theoretical speedup becomes474

Speedup =
kstd

EPLS
' P

(
1 +

P − 1

M

)−1

,475

meaning the speedup approaches P as the number of time intervals becomes large.476

Thus, we get perfect speedup in the limit. On the other hand, if P ≥ P ∗, then477

EPLS ' (M + P ∗ − 1)

(
1 +

log ξ

| log η|

)
,478

This manuscript is for review purposes only.

16 F. KWOK AND B. W. ONG

so the speedup is bounded above by479

Speedup ≤ MP ∗

M + P ∗ − 1
→ P ∗ as M →∞.480

Remark. If we assume (16) is a reasonable approximation of the actual iteration481

count, i.e., if482

km ≈ 1 +
| log ε|
| log η|

+ max
1≤j≤m

Fj − Fm,483

then a straightforward substitution yields484

km ≈

{ | log ε|
| log η| + (m− 1) log ξ

| log η| , 1 ≤ m ≤ P,
max

(
P (1 + log ξ

| log η|),
| log ε|
| log η|

)
, m > P.

485

Thus, for the initial time intervals, we need to take additional iterations to offset the486

growth of the error as m increases. The same thing happens with the non-adaptive487

WR method. Beyond the first P intervals, however, the number of iterations is488

essentially constant, but the constant depends on the number of processors P . For489

small P , we take the same number of iterations as the sequential method, but for490

large P , the constant is proportional to P . This is in agreement with our numerical491

experiments, see Section 4.492

Remark. The maximum possible speadup when P = M has been previously493

studied for the non-adaptive WR method [16]. Specifically, EPLS = M+K, where K494

is the number of waveform iterations computed for the non-adaptive WR method. To495

compute the maximum possible speedup when P = M for the adaptive WR method,496

we first let km be the number of iterations required by a Schwarz iteration in time block497

Im (i.e., the adaptive WR method with P = 1). Denote ktot =
∑M
m=1 km. Let k̃m be498

the number of iterations required in time block Im for the adaptive WR method with499

P = M , and denote k̃max = max1≤m≤M k̃m. Then the maximum possible speedup500

for the adaptive WR method with P = M is501

ktot

M + k̃max

.(20)502
503

This speedup can be estimated by realizing that ktot = Mkavg, and the ratio M
M+k̃max

504

is bounded above by one. Hence, the maximum possible speedup is bounded by kavg.505

4. Numerical Experiments. In this section, we perform five different experi-506

ments that illustrate the behaviour of the WRAP framework applied to different DD507

methods and problems. In the first three experiments, we solve the heat equation508

using three DD methods, namely, the classical and optimized Schwarz WR methods,509

as well as the Neumann-Neumann WR method. In the fourth experiment, we consider510

an advection-diffusion equation that is advection dominated; this is an interesting case511

because the performance of other time-parallel methods such as parareal [14], deteri-512

orates as the equation becomes more and more dominated by advection. Finally, we513

present a nonlinear PDE system that models an idealized autocatalytic reaction.514

In the first experiment, the adaptive classical Schwarz waveform relaxation ap-515

proach is used to solve the linear heat equation in R1,516

ut = uxx, x ∈ [0, 1], t ∈ [0, 1],517

u(0, x) = sin(π x),518519

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 17

We discretize the system using backward Euler in time and central differences in520

space, with ∆x = 1/1024 and ∆t = 0.01. The spatial domain is subdivided into four521

overlapping subdomains; the width of the overlap region is chosen to be 1
16 th of the522

subdomain width, requiring the classical Schwarz WR method to take many iterations523

to converge to the mono-domain solution. One hundred time blocks, each consisting524

of one time step, are used. For a tolerance of 10−6, the number of waveform iterates525

required at each time step for various ntasks values are shown in Figure 5.

0 20 40 60 80 100

0

200

400

timestep

#
w

av
ef

or
m

it
er

a
te

s

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 32
ntasks = 100
non-adaptive

Classical Schwarz WR

Fig. 5: Classical Schwarz coupling conditions: Number of waveform iterates at each
time step required to reach the same final tolerance for varying numbers of simulta-
neous tasks.

526

From Figure 5, several observations should be made. First, consider the total527

number of iterations (tasks) required for each implementation with ntasks, i.e., the528

area under each curve in Figure 5. The implementation requiring the fewest total529

number of iterations is ntask = 1, corresponding to the classical Schwarz DD method.530

This is unsurprising since we are iterating each time step until convergence, before531

propagating the resulting small error. Second, the total number of waveform iterates532

for the adaptive WR approach is significantly lower than for the non-adaptive classical533

Schwarz WR approach. Lastly, as ntasks is increased, the total number of waveform534

iterates required increases.535

Figure 5 does not address the speedup that is possible using adaptive pipelining,536

however. In Figure 6, we depict the computation of the waveform iterates for each537

time step (x-axis) relative to when they are computed in the simulation (y-axis) for538

the case ntasks = 8. (Figure 6 can be viewed as the silhouette of the dependency539

graph, rotated by 90 degrees.) Observe that the height of the bar corresponds to the540

number of iterations required at each time step. The WRAP algorithm does more541

iterations initially, consistent with the analysis. Also observe that each horizontal542

slice of the plot in Figure 6 will have at most eight markers because the maximum543

number of tasks that are simultaneously computed in this example is ntasks = 8.544

Finally, we see that the WRAP algorithm has a preference for iterating earlier time545

steps to convergence; later time steps are not started until the earlier time steps are546

This manuscript is for review purposes only.

18 F. KWOK AND B. W. ONG

0 20 40 60 80 100
0

200

400

600

800

timestep

E
P

L
S

Fig. 6: Classical Schwarz coupling conditions: bars denote computation of the wave-
form iterates for each time step (x-axis) relative to when they are computed in the
simulation (y-axis) for the case ntasks = 8. Here, the walltime unit is the amount
of time it would take to compute one parallel solve. This WRAP method using
ntasks = 8 requires 841 effective parallel linear solves.

iterated to convergence.547

Table 1 shows the speedup that can be expected using the adaptive pipeline WR548

approach with classical Schwarz transmission conditions. The theoretical speedup is549

computed by taking the ratio of the the number of effective parallel linear solves using550

the adaptive pipeline WR framework against that of the classical Schwarz domain551

decomposition method (ntasks = 1). The speedup increases monotonically with552

ntasks, but saturates at approximately 6, even when ntasks = M . The observed553

saturated speedup is in agreement with equation (20). Specifically, k̃max = 529 for554

the adaptive WR method with ntasks = 100. Since M = 100 and ktot = 3841 (note:555

ktot = EPLS for ntasks = 1), equation (20) gives a theoretical maximum speedup of556

6.1.

ntasks # procs EPLS speedup
1 4 3841 –
2 8 2017 1.90
4 16 1195 3.21
8 32 841 4.57
16 64 687 5.59
32 128 629 6.11
100 400 628 6.12

Table 1: Classical Schwarz coupling conditions: Theoretical speedup using the adap-
tive pipeline WR approaches for various ntasks, with M = 100 time blocks. The
effective number of parallel linear solve (EPLS) is defined in Section 3.3.

557

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 19

Speedup can be potentially improved when more time blocks are used, since the558

processors can then march in a pipe for a larger number of tasks. In Table 2, we559

repeat the previous numerical experiment with ∆t = 0.001, so that up to 1000 tasks560

can be launched. We observe that the speedup now saturates at around 7, which is561

better than before, but only marginally. The reason is that the problem has become562

easier as ∆t becomes smaller: for ntasks = 1, i.e. the standard time stepping method563

only requires an average of 9.9 EPLS per time step, instead of 38 EPLS per time step564

when ∆t = 0.01. Also note that WRAP now only takes 1388 effective solves (with565

ntasks = 100) to complete a 1000-step integration, i.e., about 1.4 EPLS per step.566

With such a low EPLS per step, it is unlikely that further speedup can be obtained567

by adding processors in the time direction. Nevertheless, this speedup comes on top568

of any spatial parallelism, so an extra multiplicative factor of 5 to 7 in the speedup569

should be considered significant.570

ntasks # procs EPLS speedup
1 4 9902 –
2 8 5182 1.91
4 16 3101 3.19
8 32 2183 4.54
16 64 1748 5.66
32 128 1537 6.44
100 400 1388 7.13

Table 2: Classical Schwarz coupling conditions: Theoretical speedup using the adap-
tive pipeline WR approaches for various ntasks, with M = 1000 time blocks.

In the second experiment, we again solve the linear heat equation using the adap-571

tive waveform relaxation framework, this time with optimized transmission conditions.572

Numerical results are presented for four non-overlapping domains, optimized param-573

eter, p = 1√
∆t

, 100 time blocks, each time block consisting of a single time step. For574

a tolerance of 10−12, the number of waveform iterates required at each time step for575

various ntasks values are shown in Figure 7. Similar to the previous experiment,576

Table 3 shows the theoretical speedup that can be expected using the WRAP ap-577

proach with optimized transmission conditions. The theoretical speedup is computed578

by comparing the number of effective parallel linear solves using the adaptive pipeline579

WR framework compared against the optimized Schwarz WR approach (ntasks = 1).580

Similar observations to the previous numerical experiment, consistent with the anal-581

ysis can be made. Again, the modest parallel speedup numbers can be explained by582

the low number of EPLS per time step, which went from 8.65 for ntasks = 1 to 1.65583

for ntasks ≥ 16.584

Recently, a pipeline parallel implementation for Neumann–Neumann waveform585

relaxation (NNWR) methods was explored [17]. The NNWR method performs a586

two-step iteration consisting of first solving a “Dirichlet” sub-problem on each space–587

time domain, followed by solving an auxiliary “Neumann” sub-problem. Although no588

analysis is provided for the adaptive pipeline framework applied to the Neumman–589

Neumann waveform relaxation method, we show in this third numerical experiment590

that similar behavior to previous numerical experiments can be observed. The linear591

heat equation in R1 is solved with the spatial domain divided into four non-overlapping592

subdomains. For a tolerance of 10−12, the number of distributed linear solves required593

This manuscript is for review purposes only.

20 F. KWOK AND B. W. ONG

0 20 40 60 80 100

20

40

60

timestep

#
w

av
ef

o
rm

it
er

at
es

ntasks = 1
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 100

Fig. 7: WRAP with optimized transmission conditions: plot shows the number of
waveform iterates at each time step required to reach the same final tolerance for
varying numbers of simultaneous tasks.

ntasks # procs EPLS speedup
1 4 865 –
2 8 436 1.98
4 16 228 3.79
8 32 176 4.91
16 64 165 5.24
100 400 165 5.24

Table 3: Theoretical speedup using the WRAP method with optimized transmission
conditions for M = 100 time blocks and various ntasks.

at each time step for various ntasks values are shown in Figure 8. Here, each Dirichlet594

update or Neumann update requires a distributed linear solve. Table 4 shows the595

theoretical speedup that can be expected using the adaptive pipeline NNWR approach596

compared with a classical Neumann-Neumann iteration. The theoretical speedup597

is computed by comparing the number of effective parallel linear solves using the598

adaptive pipeline WR framework compared against the Neumann–Neumann domain599

decomposition method (ntasks = 1).600

For the fourth experiment, we solve the advection-diffusion equation601

ut = νuxx + ux, x ∈ [0, 2], t ∈ [0, 4],602603

with periodic boundary conditions,

u(0, t) = u(2, t), ux(0, t) = ux(2, t), t ∈ (0, T),

and with initial conditions u(x, 0) = e−20(x−1)2 for x ∈ (0, 2). We discretize the system604

using backward Euler in time and first order upwind in space, with ∆x = 1/512 and605

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 21

0 20 40 60 80 100

20

40

60

timestep

#
L

in
ea

r
S

ol
ve

s

ntasks = 1
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 100

Fig. 8: WRAP framework applied to NNWR methods: plot shows the number of
waveform iterates at each time step required to reach the same final tolerance for
varying numbers of simultaneous tasks.

ntasks # procs EPLS speedup
1 4 1358 –
2 8 681 1.99
4 16 350 3.88
8 32 206 6.59
16 64 170 7.99
100 400 164 8.28

Table 4: Theoretical speedup using the WRAP framework applied to NNWR method
for M = 100 time blocks and various ntasks.

∆t = 0.01. As ν → 0, the problem becomes more and more advection dominated.606

It has been shown in [4] that the convergence of the Parareal method deteriorates607

for small ν, and speedup suffers as a result. We show our results for ν = 0.05 and608

ν = 0.005 in Tables 5 and 6 respectively. Four overlapping subdomains and Dirichlet609

transmission conditions are used in both cases. We see that our speedup remains610

reasonable even for these highly advection-dominated cases. In fact, the less favorable611

speedup for ν = 0.005 is due to the problem being easier : serial time-stepping only612

requires 2400 EPLS, or 6 EPLS per time step, instead of 4589 EPLS (or 11.5 EPLS613

per time step) in the more diffusive case.614

In the last experiment, we consider an idealized autocatalytic reaction, which can615

be modelled by the following reaction–diffusion system,616

ut = A+ u2 v − (B + 1)u+ αuxx,617

vt = B u− u2 v + α vxx.618619

Here, A = 1 and B = 3 are rate constants, and α = 1
50 is the diffusion constant. The620

This manuscript is for review purposes only.

22 F. KWOK AND B. W. ONG

0 100 200 300 400
0

20

40

60

80

timestep

#
w

av
ef

or
m

it
er

a
te

s

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 32
ntasks = 400
non-adaptive

Classical Schwarz WR

Fig. 9: WRAP for advection-diffusion equation with ν = 0.05: plot shows the number
of waveform iterates at each time step required to reach the same final tolerance for
varying numbers of simultaneous tasks.

0 100 200 300 400
0

5

10

15

20

timestep

#
w

av
ef

o
rm

it
er

at
es

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 32
ntasks = 400
non-adaptive

Classical Schwarz WR

Fig. 10: WRAP for advection-diffusion equation with ν = 0.005: plot shows the num-
ber of waveform iterates at each time step required to reach the same final tolerance
for varying numbers of simultaneous tasks.

initial and boundary conditions are:621

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,622

u(x, 0) = 1 + sin 2π x, v(x, 0) = 0.623624

This reaction system is nonlinear, and stiff due to the diffusion. We discretize the625

system using an IMEX scheme: the reaction term is handled explicitly using the626

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 23

ntasks # procs EPLS speedup
1 4 4859 –
2 8 2437 1.99
4 16 1250 3.89
8 32 754 6.44
16 64 562 8.65
32 128 489 9.94
100 400 487 10.00

Table 5: Theoretical speedup using the WRAP framework applied to the advection-
diffusion problem with ν = 0.05 and M = 400 time blocks.

ntasks # procs EPLS speedup
1 4 2400 –
2 8 1201 2.00
4 16 604 3.97
8 32 422 5.69
16 64 418 5.74
32 128 418 5.74
100 400 418 5.74

Table 6: Theoretical speedup using the WRAP framework applied to the advection-
diffusion problem with ν = 0.005 and M = 400 time blocks.

explicit Euler integrator, and the diffusion term is handled implicitly using the implicit627

Euler integrator. A centered finite difference approximation is used to approximate the628

diffusion term. The spatial domain is subdivided into four overlapping subdomains;629

the width of the overlap region is again chosen to be 1
16 th of the subdomain width. One630

hundred time blocks, each consisting of one time step, are used. Similar observations631

to the first numerical experiment can be made. For a tolerance of 10−6, the number632

of waveform iterates required at each time step for various ntasks values are shown633

in Figure 11. The theoretical speedup is summarized in Table 7.

ntasks # procs EPLS speedup
1 4 975 –
2 8 495 1.97
4 16 270 3.61
8 32 184 5.30
16 64 154 6.33
100 400 149 6.54

Table 7: Theoretical speedup for solving the Brusselator system using the WRAP
framework with Dirichlet transmission condition and M = 100 time blocks.

634

5. Conclusions. Adaptive pipelining is introduced to efficiently utilize a fixed635

number of computational workers for waveform relaxation methods. In this method,636

This manuscript is for review purposes only.

24 F. KWOK AND B. W. ONG

0 20 40 60 80 100

0

10

20

30

40

50

timestep

#
w

av
ef

or
m

it
er

a
te

s

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 100
non-adaptive

Classical Schwarz WR

Fig. 11: Solving the Brusselator equation using the WRAP framework, Dirichlet
transmission conditions. Here, we plot the number of waveform iterates at each time
step required to reach the same final tolerance for varying numbers of simultaneous
tasks.

we address two main issues of WR methods, namely convergence degradation for637

long-time integration, and oversolving in the initial time steps. We do so by keeping638

the effective window of integration small, and reassigning workers from converged639

time steps in order to grow the time horizon. The new WRAP methods are analyzed640

to show the theoretical speedup that can be expected. The WRAP framework has641

several desirable properties. First, one limiting case recovers Schwarz DD methods,642

allowing a direct comparison with classical DD methods. Another limiting case re-643

covers classical WR methods. The numerical experiments show that parallel speedup644

with moderate efficiency over classical DD methods can be expected with the WRAP645

framework. Secondly, although the parallel speedup saturates as the number of tasks646

(i.e. number of waveform iterates computed in parallel) increases, the speedup appears647

as a multiplicative factor when used in combination with other temporal or spatial648

parallelism. In fact, this method can be used within parareal itself in order to accel-649

erate the fine integration steps. Thus, our method is complementary to existing space650

and time parallel methods, and can be used to speed up computation significantly651

when the saturation point is reached for other types of parallelism.652

REFERENCES653

[1] D. Bennequin, M. J. Gander, and L. Halpern, A Homographic Best Approximation Problem654
with Application to Optimized Schwarz Waveform Relaxation, Math. of Comp., (2009),655
pp. 185–223.656

[2] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of657
Texts in Applied Mathematics, Springer Science & Business Media, 2007.658

[3] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods:659
algorithms, theory, and parallel implementation, SIAM, 2015.660

[4] M. J. Gander, Five decades of time parallel time integration, and a note on the degradation661
of the performance of the parareal algorithm as a function of the reynolds number, in662

This manuscript is for review purposes only.

WAVEFORM RELAXATION WITH ADAPTIVE PIPELINING (WRAP) 25

Oberwolfach Report, 2017.663
[5] M. J. Gander, F. Kwok, and B. C. Mandal, Dirichlet-neumann and neumann-neumann664

waveform relaxation algorithms for parabolic problems, Elect. Trans. Numer. Anal., 45665
(2016), pp. 424–456.666

[6] M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation for667
the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014–2031.668

[7] M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation669
in n dimensions, BIT Numerical Mathematics, 42 (2002), pp. 779–795.670

[8] E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Nu-671
merische Mathematik, 93 (2002), pp. 279–313.672

[9] B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time dependent problems and difference meth-673
ods, vol. 24, John Wiley & Sons, 1995.674

[10] L. Halpern, C. Japhet, and J. Szeftel, Optimized Schwarz waveform relaxation and dis-675
continuous galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50676
(2012), pp. 2588–2611.677

[11] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis,678
Courier Corporation, 2012.679

[12] A. Iserles, A first course in the numerical analysis of differential equations, no. 44, Cambridge680
University Press, 2009.681

[13] F. Kwok, Neumann-Neumann Waveform Relaxation for the Time-Dependent Heat Equa-682
tion, in Domain Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander,683
L. Halpern, G. Pichot, T. Sassi, and O. B. Widlund, eds., vol. 98, Springer-Verlag, 2014,684
pp. 189–198.685

[14] J.-L. Lions, Y. Maday, and G. Turinici, A parareal in time discretization of PDEs, C.R.686
Acad. Sci. Paris, Serie I, 332 (2001), pp. 661–668.687

[15] B. C. Mandal, A Time-Dependent Dirichlet-Neumann Method for the Heat Equation, in Do-688
main Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander, L. Halpern,689
G. Pichot, T. Sassi, and O. B. Widlund, eds., vol. 98, Springer-Verlag, 2014, pp. 467–475.690

[16] B. W. Ong, S. High, and F. Kwok, Pipeline schwarz waveform relaxation, in Domain Decom-691
position Methods in Science and Engineering XXII, T. Dickopf, M. J. Gander, L. Halpern,692
R. Krause, and L. Pavarino, eds., Lecture Notes in Computational Science and Engi-693
neering, Springer International Publishing, 2016, pp. 179–187, https://doi.org/10.1007/694
978-3-319-18827-0 36, http://dx.doi.org/10.1007/978-3-319-18827-0 36.695

[17] B. W. Ong and B. C. Mandal, Pipeline implementations of Neumann–Neumann and696
Dirichlet–Neumann waveform relaxation methods, Numerical Algorithms, (2017), https:697
//doi.org/10.1007/s11075-017-0364-3, https://doi.org/10.1007/s11075-017-0364-3.698

[18] A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algorithms and Theory,699
vol. 34 of Springer Series in Computational Mathematics, Springer, 2005.700

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-319-18827-0_36
https://doi.org/10.1007/978-3-319-18827-0_36
https://doi.org/10.1007/978-3-319-18827-0_36
http://dx.doi.org/10.1007/978-3-319-18827-0_36
https://doi.org/10.1007/s11075-017-0364-3
https://doi.org/10.1007/s11075-017-0364-3
https://doi.org/10.1007/s11075-017-0364-3
https://doi.org/10.1007/s11075-017-0364-3

	Introduction
	Algorithms
	Convergence Analysis
	The non-adaptive case
	Adaptive Case
	Theoretical Speedup

	Numerical Experiments
	Conclusions
	References

